

BaiY Application Platform

Technical White Paper

Version: 2.43

http://baiy.cn

Copyright © 2001-2023 BaiYang. All rights reserved.

http://baiy.cn/

BaiY Application Platform

 Technical White Paper

I

Introduction

It has been 16 years since the publication of the first edition of BaiY Application Platform. During

the years, I have written more than one million lines of codes for the platform using Assembly language

and C/C++ languages. The most fundamental and important part of the platform, the libutilitis library,

is wholly implemented by myself. In addition to the Windows platform that I had already been familiar

with, I have gradually become familiar with and become fond of some other operating systems like

Linux, FreeBSD/NetBSD/OpenBSD and OpenSolaris, during the process of encapsulating a number of

cross-platform* functions into libutilitis.

My main approach for implementing the other libraries within the platform is to design a set of

interfaces and frameworks on the basis of the libutilitis library. The specific features, such as

cryptographic and compression algorithms, the audio encoder/decoder, and cross platform UI

components are implemented using stable third-party codes that are freely available. After taking into

account third-party open source code, the application platform contains more than five million lines of

code.

A variety of products that are built upon the application platform have been widely deployed in

different production environments, such as:

 State Grid Corporation of China (SGCC, Top 2 in the world)

 China National Petroleum Corp (CNPC, Top 5 in the world)

BaiY Application Platform

 Technical White Paper

II

 General Electric Company (GE, Top 5 in the world)

 Agricultural Bank of China (ABC, Global 500)

 China Industrial Bank (CIB, Global 500)

 China Everbright Bank (CEB)

 Sinosafe Insurance

 taobao.com (The largest e-commerce platform in China)

 SOCIETE GENERALE (SOCIETE GENERALE, The second largest bank in Europe, Global 500)

 Delphi (Global 500)

 United Airlines (Global 500)

 China Unicom (Global 500)

 China Mobile (Top 50 in the world)

 Bertelsmann (Global 500, The world's largest outsourcing call center)

 Teleperformance SE (TPC, French telecommunications company, 300,000 employees

worldwide)

 Accenture (Global 500)

 Eldman (The world's largest public relations company)

 China Soong Ching Ling Foundation (National Fund founded by Deng Xiaoping)

 BMW Group (Global 500)

 Shaanxi Automobile Group

 One Foundation

 yiguo.com (China's leading fresh food e-commerce)

 Yantai Wanhua Group

And etc. The wide deployment in real production environments not only provides a reliable and

platform-independent infrastructure for the high-level applications, but also has verified the reliability,

stability, portability and efficiency of the application platform.

Copyright of the Application Platform belongs to BaiYang, wherein a number of technologies are

subject to a number of national and international patents protections.

The application platform currently supports the following operating systems :

 The full range of Windows operating systems including Win98/ME,

WinNT4/2000/XP/2k3/Vis ta/2k8/Win7/2k8r2/Win8/8.1/2012/2012r2, etc.

BaiY Application Platform

 Technical White Paper

III

 Linux, FreeBSD, NetBSD, IBM, AIX, HP-UX, Solaris, MAC OS X, and a variety of Un*x/POSIX systems
 vxWorks , QNX, SMX, DOS, WinCE (Windows Mobile), NanoGUI, eCos , RTEMS, Android, iOS and other embedded

systems.
The currently supported hardware platforms include x86/x64, ARM, RISC-V, IA64, MIPS, POWER, SPARC and etc.

A Quick Brief

As previously described, BaiY Application Platform contains millions of lines of assembly, C / C + +

code and thousands of mature general-purpose components. It has been tested in the real production

environment of numerous Fortune 500 companies. It has been used in multiple high-load

telecommunications, Internet and distributed computing environments for more than a decade .

Thousands of mature and reliable high-quality functional components can greatly enhance the

quality of software products in terms of performance, functionality, and stability. It also brought

unimaginable convenience for the development of the product. For example:

High-performance IO server components

The Application Platform uses assembly and asynchronous IO to optimize the network service

components. These components enable high performance network services through the memory

zero-copy and asynchronous IO mechanisms via DMA + hardware interrupts. On an entry-level 1U PC

Server (with dual-socket Intel Xeon 56xx) manufactured in 2011 (at that time, the price of the machine

BaiY Application Platform

 Technical White Paper

IV

was less than 20,000 CNY), a single node can permit tens of millions of TCP / HTTP concurrent

connections. Correspondingly, with the same machine, a general server development by Java or .NET

can only support up to 3000 to 5000 concurrent connections, PHP is even lower (See: 3.2.1 High

performance I/O Framework, 3.3.1 Web Framework, and 3.3.2 Typical Web Use Cases).

Consistent HAC and HPC across multiple active IDC

Distributed high availability and high performance cluster with strong consistency assurance (anti

split-brain): Thanks for the patented nano-SOA large-scale distributed architecture. We could maintain

a high cohesion, low coupling design under the premise of keeping the single node performance to far

beyond the traditional SOA architecture, while simplifying the cluster deployment, and improve the

cluster maintainability (See: 5.4 nSOA - libapidbc, 5.4.1 SOA vs. AIO, and 5.4.2 nSOA Architecture).

BaiY Port Switch Service (BYPSS): BYPSS is designed for providing a high available, strongly

consistent and high performance distributed coordination and message dispatching service based on

the quorum algorithm. It can be used to provide services such as fault detection, service election,

service discovery, distributed lock, and other distributed coordination functionalities, it also integrates

a message routing service.

Thanks for our patented algorithm, we eliminate the network broadcast, disk IO and other major

costs within the traditional Paxos / Raft algorithms. We have also done a lot of other optimizations,

such as: support for batch mode, use the concurrent hash table and high performance IO component.

These optimizations allow BYPSS to support ultra-large-scale computing clusters consist with millions

nodes and trillions ports in a limited (both for throughput and latency) cross-IDC network environment

(See: 5.4.3 Port Switch Service).

Scaling out nodes across multiple active IDC and keeping strong consistency guarantee is the key

technology of modern high-performance and high-availability cluster, which is also recognized as the

main difficulty in the industry. As examples: September 4, 2018, the cooling system failure of a

Microsoft data center in South Central US caused Office, Active Directory, V isual Studio and other

services to be offline for nearly 10 hours; August 20, 2015 Google GCE service interrupted for 12 hours

and permanently lost part of data; May 27, 2015, July 22, 2016 and Dec 5, 2019 Alipay interrupted for

several hours; As well as the July 22, 2013 and Mar 29, 2023 WeChat service interruption for several

hours, and etc. These major accidents are due to product not implement the multiple active IDC

architecture correctly, so a single IDC failure led to full service off-line.

We have over 10 years of experience in the distributed computing field. We hold the related

distributed architecture and algorithms which protected by a number of national and international

patents. Thanks to these leading distributed clustering algorithms and architectures, we can deploy

multiple active IDC cluster with strong consistent, high availability, and high-performance guarantee

easily. We have been implemented the truly multiple active IDC cluster on full range of our products,

BaiY Application Platform

 Technical White Paper

V

providing our customers with unparalleled data reliability and service availability assurance.

Distributed coordination service

Figure 1

Distributed coordination services provide functions such as service discovery, service election,

fault detection, failover, failback, distributed lock, task scheduling, message routing and message

dispatching.

The distributed coordination service is the brain of a distributed cluster that is responsible for

coordinating all the server nodes in the cluster. Make distributed clusters into an organic whole that

works effectively and consistently, making it a linear scalable high performance (HPC) and high

availability (HAC) distributed clustering system.

BaiY Application Platform

 Technical White Paper

VI

Figure 2

The traditional Paxos / Raft distributed coordination algorithm initiates voting for each request,

generating at least 2 to 4 broadcasts (b1, b2...) and multiple disk IO. Making it highly demanding on

network throughput and communication latency, and cannot be deployed across multiple data centers.

Our patent algorithm completely eliminated these overheads. Thus greatly reducing the network

load, significantly improve the overall efficiency. And makes it easy to deploy clusters across multiple

data centers.

BaiY Application Platform

 Technical White Paper

VII

Figure 3

Based on our unique distributed coordination technology, the high performance, strong

consistency cluster across multiple data centers can be implemented easily. Fault detection and failover

can be done in milliseconds. The system is still available even if the entire data center is offline. We also

providing a strong consistency guarantee: even if there is a network partition, it will not appear split

brain and other data inconsistencies. For example:

BaiY Application Platform

 Technical White Paper

VIII

Figure 4

In the traditional dual fault tolerance scheme, the slave node automatically promotes itself as the

master node after losing the heartbeat signal and continues to provide services to achieve high

availability. In this case, split brain problem occurs when both the master and slave nodes are normal,

but the heartbeat connection is accidentally disconnected (network partition). As shown in Figure 4: At

this time, node A and B both think that the other party is offline. As a result, both nodes upgrade

themselves to the master node and provide the same service, respectively. This will result in

inconsistent data that is difficult to recover.

Our BYPSS service provides the same level of consistency as the traditional Paxos / Raft distributed

algorithm, fundamentally eliminates the occurrence of inconsistencies such as split brain.

Similarly: ICBC, Alipay and other services are also have its own remote disaster recovery solutions

(Alipay: Hangzhou → Shenzhen, ICBC: Shanghai → Beijing). However, in their remote disaster

recovery schemes, there is no paxos and other distributed coordination algorithms between the two

data centers, so strong consistency cannot be achieved.

For example, a transfer transaction that has been successfully completed at Alipay may take

several minutes or even hours to be synchronized from the Hangzhou main IDC to the disaster recovery

center in Shenzhen. When the Hangzhou main data center offline, all of these non-synchronized

BaiY Application Platform

 Technical White Paper

IX

transactions are lost if they switch to the disaster recovery center, leads a large number of

inconsistencies. Therefore, ICBC, Alipay and other institutions would rather stop the service for hours

or even longer, and would not be willing to switch to the disaster recovery center in the major

accidents of the main IDC. Operators will consider turning their business into a disaster recovery center

only after a devastating accident such as a fire in the main data center.

Therefore, the remote disaster recovery schemes and our strong consistency, high availability,

anti-split brain multi-IDC solution is essentially different.

In addition, Paxos / Raft cannot guarantee the strong consistency of data during the process of

simultaneous failure and recovery of more than half of the nodes, and may cause inconsistencies such

as phantom reading (For example, in a three-node cluster, node A goes offline due to power failure,

and after one hour, nodes B and C go offline because of disk failure. At this point, node A resumes

power supply and goes online again, and then the administrator replaces the disks of nodes B and C

and restores them to go online. At this point, the data modification of the entire cluster in the last hour

will be lost, and the cluster will fall back to the state before the A node goes offline at 1 hour ago).

BYPSS fundamentally avoids such problems, so BYPSS has a stronger consistency guarantee than Paxos

/ Raft.

Due to the elimination of a large number of broadcast and distributed disk IO and other high-cost

operation brought by the Paxos / Raft algorithm. Making BYPSS distributed coordination component

also provides more excellent features in addition to the above advantages:

Bulk operation: Allows each network packet to contain a large number of distributed coordination

requests at the same time. Network utilization greatly improved, from the previous less than 5% to

more than 99%. Similar to the difference between a flight only can transport one passenger each time,

and another one can transport full of passengers. In the actual test, in a single Gigabit network card,

BYPSS can achieve 4 million requests per second performance. In the dual-port 10 Gigabit network card

(currently the mainstream data center configuration), the throughput of 80 million requests per second

can be reached. There is a huge improvement compared to the Paxos / Raft cluster which performance

is usually less than 200 requests per second (restricted by its large number of disk IO and network

broadcast).

Large capacity: usually every 10GB of memory can support at least 100 million ports. In a 1U-size

entry-level PC Server with 64 DIMM slots (8TB), it can support at least 80 billion objects at the same

time. In a 32U large PC server (96TB), it can support about 1 trillion distributed coordinating objects. In

contrast, traditional Paxos / Raft algorithms can only effectively manage and schedule hundreds of

thousands of objects due to their limitations.

The essence of the problem is that in algorithms such as Paxos / Raft, more than 99.99% of the

cost is spent on broadcast (voting) and disk writes. The purpose of these behaviors is to ensure the

reliability of the data (data needs to be stored on persistent devices on most nodes simultaneously).

BaiY Application Platform

 Technical White Paper

X

However, distributed coordination functions such as service discovery, service election, fault detection,

failover, failback, distributed lock, and task scheduling are all temporary data that have no long-term

preservation value. So it makes no sense to spend more than 99.99% of your effort to persist multiple

copies of them - even if there is a rare disaster that causes the main node to go offline, we can

regenerate the data in an instant with great efficiency.

It’s as if tom bought a car that has an additional insurance service. The terms are: In the event of a

fatal traffic accident, it provides a back in time mechanism that takes tom back to the moment before

the accident, so he can avoid this accident. Of course, such a powerful service is certainly expensive,

and it probably needs to prepay all the wealth tom’s family can get in the next three generations. And

these prepaid service fees are not deductible even if he has never had a fatal traffic accident with this

car. Such an expensive service that is unlikely to be used in a lifetime (what percentage of people will

have fatal traffic accidents? Not to mention that it can only happen on the specific car), even if it does

happen, this huge price is hard to say is worth it?

And we offer a different kind of additional service for our cars: Although there is no back in time

function, our service can instant and intact resurrect all the victims in the same place after the fatal

accident. The most important thing is that the service will not charge any fees in advance. Tom only

needs to pay a regenerative technology service fee equivalent to his half-month salary after each such

disaster.

In summary, our patented distributed coordination algorithm providing strong consistency and

high availability assurance at the same level as the traditional Paxos / Raft algorithm. At the same time,

it also greatly reduces the system's dependence on the network and disk IO, and significantly improves

the overall system performance and capacity. This is a significant improvement in the high availability

(HAC) and high performance (HPC), large-scale, strongly consistent distributed clusters.

For a further description of the BYPSS service, see: 5.4.3 Port Switch Service.

Efficient high-strength cryptographic components

This includes basic functions such as public-key algorithms, symmetric encryption algorithms, data

encoding and decoding, hash and message authentication algorithms, data compression algorithms,

and etc (See: 4. Cross-platform Cryptographic Library - libcrypto, and 4.1 The Cryptographic Algorithm

Module - algorithm). In addition, the application platform also provides a number of highly abstract

advanced components, such as:

The Virtual File System (VFS) supports data encryption and compression on-the-fly. VFS supports

dozens of strong encryption algorithms, including AES (128/256), TwoFish, etc., optimized using AES-NI,

SSE4 and other assembly instruction set, with high efficiency. We use this component to provide

on-the-fly data compression and strong encryption protection for the whole database and

BaiY Application Platform

 Technical White Paper

XI

configuration categories in our products like BlueWhale, WhiteDolphin, ZhiYeJing.com and so on. It also

includes strong cryptographic communication protection components based on Public Key

Infrastructure (PKI) and etc. (See: 4.2 The Common Facilities Module - facility)

In recent years, security issues frequently occur. Well-known enterprises such as Amazon,

Wal-Mart, Yahoo, Linkedin, OpenAI (ChatGPT), Sony, JP Morgan Chase, UPS, eBay, dj.com, Alipay,

ctrip.com, 12306, Netease, CSDN, China Life Insurance, as well as major hotel groups (such as HOME

INNS, HANTING INNS, Jinjiang Hotels, InterContinental, Sheraton, Marriott, etc.) are frequently

reported a large number of users information disclosure and others serious security incidents, security

protection demand immediate attention.

All of our databases (the entire dataset) and configuration data are stored in our self-developed

VFS which supports on-the-fly data compression and strong encryption, provides comprehensive

protection for our customers.

In addition, our unique High Performance Network Security Tunnel (BYST) component provides

high-performance, high-throughput and high-network utilization VPN services while maintaining

communication security, further help customs improve the performance and security of network

communication in local, metro and wide area networks (see:5.6 Secure Tunnel Service (BYST)).

Strong encryption algorithms based on industry standards ensure that even if a supercomputer

with one trillion trillions of key cracking attempts per second is made in the future, it will still take an

average of 540 billion years to crack a key.

Data query engine

The application platform also includes a query engine. Its ability is better than SQL language.

Having own query engine gives us the flexibility to switch between RDBMSs such as MySQL, MS SQL

Server, Oracle, DB2, SQLite, and NoSQL databases like MongoDB and Cassandra. In addition to making

applications database-independent, the query engine also provides a variety of advanced

characteristics that are not supported by SQL language, such as ARE (Advanced Regular Expressions)

query with support for Unicode charset, join query with support for nested tables, mix query of

business data and configuration data, virtual field query, and other customized queries.

The query engine was implemented using C/C++, and its hotspot codes were optimized using

assembly language for mainstream hardware platforms. 13 million times of evaluation of expressions

per second can be achieved on a ThinkPad W510 notebook (having 4 cores and 8 threads @1.6GHz)

produced in 2010, using a single core and a single thread only (See: 3.3 Common Facilities Module -

facility, and 5.4 nSOA - libapidbc).

BaiY Application Platform

 Technical White Paper

XII

More...

The above only refers to a few highlights within the thousands of components in BaiY Application

Platform. A more complete description is given below.

BaiY Application Platform

 Technical White Paper

XIII

Revision History

Version Date Description Changed by Reviewed by

1.0 2007-07-21 First edition migrated from the old introduction

document

Bai Yang

1.1 2007-08-09 Updated document structure (changed section

6.3.3 to section 6.4) and corrected minor

wording errors

Bai Yang

1.2 2008-01-04 Added description about Web application

extensions

Bai Yang

1.3 2008-03-19 Added support for bz2 algorithm Bai Yang

1.4 2009-12-02 Updated AIO framework and added support for

SCGI

Bai Yang

1.5 2010-04-27 Restructured the document; added support for

HTTP

Bai Yang

1.6 2010-06-13 Added Web framework comparison table Bai Yang

1.7 2010-07-06 Added description about HTTP Pipelining Bai Yang

1.8 2010-08-25 Added new components such as LRU Cache,

according to recent adjustment to the low-level

library

Bai Yang

1.9 2010-08-27 Added description about a typical working

model of Web application nodes

Bai Yang

1.10 2010-12-10 Added support for /dev/poll and pollset to the

AIO framework

Bai Yang

1.11 2011-06-07 Annual update; added description about the

development kit for the CConfig component

Bai Yang

1.12 2012-03-15 Annual update; added description about

components such as variant data type

Bai Yang

1.13 2012-04-12 Added LZ4 data compression algorithm Bai Yang

2.0 2012-04-17 Restructured the document; moved description

about the cross-platform GUI framework and the

cross-platform audio processing library to

chapter 6. Interface, Media and Other Tools;

added chapter 5. Data Processing Tools

Bai Yang

2.1 2012-04-19 Added new sections such as 6.3 CConfig

Language Binding Component and 6.4 JavaScript

Tools Library - libbaiy

Bai Yang

2.2 2012-05-07 Added description about generic query

conditions and QLI (Query Language Interpreter)

Bai Yang

2.3 2012-05-19 Added description about Search Helper Bai Yang

2.4 2012-06-09 Added JavaScript Keyword Tree container into Bai Yang

BaiY Application Platform

 Technical White Paper

XIV

Version Date Description Changed by Reviewed by

libbaiy

2.5 2012-12-02 Updated figures and page layout Bai Yang

2.6 2013-01-16 Annual update; corrected an invalid reference Bai Yang

2.7 2013-03-11 Updated description about atomic and Memory

Barrier

Bai Yang

2.8 2013-03-16 Added support for SHA-3 Bai Yang Huasong Liu

2.9 2013-05-22 Corrected a typo Bai Yang

2.10 2014-01-12 Annual update; added the cross-platform

mechanism used for tracing function call stack

Bai Yang

2.11 2014-02-14 Added new components (e.g. Message

Dispatcher) to libbaiy.js

Bai Yang

2.12 2014-06-07 Added the Task Queue component to libbaiy.js Bai Yang

2.13 2015-02-07 Added description about the libapidbc library Bai Yang

2.14 2015-03-23 Added further discussions about distributed

caching, NoSQL and NewSQL into the section

Database and memcached Services

Bai Yang

2.15 2015-05-06 Rewording; corrected some typos; updated

some data

Bai Yang

2.16 2015-05-30 Small updates Bai Yang

2.17 2015-07-24 Updated some sections Bai Yang

2.18 2015-11-04 Small updates Bai Yang

2.19 2015-12-21 Updated some data Bai Yang

2.20 2016-1-22 Small updates Bai Yang

2.21 2016-4-13 Updated some sections Bai Yang

2.22 2016-7-15 Updated some data Bai Yang

2.23 2016-10-04 Add support for CRC32-C, ChaCha, and BLAKE2

algorithms

Bai Yang

2.24 2016-12-06 Add “A Quick Brief” section Bai Yang

2.25 2016-12-16 Add “BYPSS based High performance cluster”

section

Bai Yang

2.26 2017-04-03 Added description about the diff function of the

CConfig component

Bai Yang

2.27 2017-08-06 Added “Distributed coordination service” section Bai Yang

2.28 2017-10-07 Added “Distributed FTS Service” section Bai Yang

2.29 2018-01-13 Small updates Bai Yang

2.30 2018-03-26 Change "μSOA" to "nano-SOA" to avoid

confusion with "micro-SOA"

Bai Yang

2.31 2018-05-22 Add support for ARIA, Kalyna, Simon, Speck,

SM4, ThreeFish, SipHash, Poly1305, SM3

algorithms

Bai Yang

BaiY Application Platform

 Technical White Paper

XV

Version Date Description Changed by Reviewed by

2.32 2019-01-12 Added description for BYDMQ distributed

message queue component

Bai Yang

2.33 2019-02-13 Add support for CHAM, HIGHT, LEA, SIMECK,

Rabbit, and HC algorithms

Bai Yang

2.34 2019-03-23 Add support for SHAKE algorithm Bai Yang

2.35 2019-04-27 Added description for BYST secure tunnel

component

Bai Yang

2.36 2020-08-18 Added the glance of our international patents Bai Yang

2.37 2021-03-03 Added some supplementary descriptions related

to BYST

Bai Yang

2.38 2021-10-16 Added support for LSH algorithm Bai Yang

2.39 2021-10-26 Small updates Bai Yang

2.40 2021-10-31 Add a summary description for 5.6 Secure

Tunnel Service (BYST)

Bai Yang

2.41 2022-02-20 Clarified several BYPSS/BYDMQ related details;

fixed individual typos

Bai Yang

2.42 2023-02-25 Update typical customer list and patent list Bai Yang

2.43 2023-02-38 Add millisecond level failover support for BYPSS

and BYDMQ

Bai Yang

BaiY Application Platform

 Technical White Paper

XVI

Contents

INTRODUCTION .. I

A QUICK BRIEF ...III

High-performance IO server components ...III

Consistent HAC and HPC across multiple active IDC ... IV

Efficient high-strength cryptographic components ...X

Data query engine ..XI

More... XII

REVISION HISTORY ...XIII

CONTENTS ... XVI

1. OVERVIEW OF THE APPLICATION PLATFORM..1

2. ARCHITECTURE OF THE PLATFORM ...2

3. CROSS-PLATFORM INFRASTRUCTURE - L IBUTILITIS ...4

3.1 THE BASE MODULE - BASE...5

3.1.1 Bottom Layer of the Base Module..5

3.1.2 Interface Layer of the Base Module ...6

3.2 SYSTEM UTILITIES MODULE－SYSUTIL .. 10

3.2.1 High performance I/O Framework .. 14

3.3 COMMON FACILITIES MODULE - FACILITY .. 16

3.3.1 Web Framework ... 24

3.3.2 Typical Web Use Cases .. 30

3.3.3 FastCGI? SCGI? HTTP! .. 41

4. CROSS-PLATFORM CRYPTOGRAPHIC LIBRARY - L IBCRYPTO ...42

4.1 THE CRYPTOGRAPHIC ALGORITHM MODULE - ALGORITHM... 42

4.1.1 Block Cipher Algorithms.. 43

4.1.2 Stream Cipher Algorithms... 45

4.1.3 Public Key Algorithms .. 46

4.1.4 Hash Algorithms ... 46

4.1.5 Message Authentication Algorithms..47

4.1.6 Data Compression Algorithms ..47

4.1.7 Data Encode/Decode Algorithms ...47

4.1.8 Random Number Generator Algorithm...47

4.2 THE COMMON FACILITIES MODULE - FACILITY ... 48

5. DATA PROCESSING TOOLS ..49

BaiY Application Platform

 Technical White Paper

XVII

5.1 REPORT GENERATION LIBRARY - LIBREPORT ... 49

5.2 ODBC ENCAPSULATION LIBRARY - LIBODBC_CPP... 49

5.3 SQLITE ENCAPSULATION LIBRARY - LIBSQLITE_CPP ...51

5.4 NSOA - LIBAPIDBC ..52

5.4.1 SOA vs. AIO .. 54

5.4.2 nSOA Architecture...56

5.4.3 Port Switch Service (BYPSS) ...57

5.4.4 Distributed Message Queue Service (BYDMQ) ... 79

5.5 DISTRIBUTED FULL TEXT SEARCH (FTS) SERVICE.. 85

5.6 SECURE TUNNEL SERVICE (BYST) ... 86

6. INTERFACE, MEDIA AND OTHER TOOLS ..90

6.1 CROSS-PLATFORM AUDIO I/O LIBRARY - LIBAUDIOIO.. 90

6.2 CROSS-PLATFORM I18N GUI FRAMEWORK - LIBMLGUI ..92

6.2.1 File System Extension .. 94

6.2.2 I18N Components Library ... 94

6.2.3 Quick Help Framework .. 96

6.2.4 Universal Graphic Controls ... 98

6.3 CCONFIG LANGUAGE BINDING COMPONENT... 102

6.4 JAVASCRIPT TOOLS LIBRARY - LIBBAIY .. 102

6.4.1 Functions Library .. 103

6.4.2 User Interface Library .. 104

7. ERROR PROCESSING MECHANISM .. 106

BaiY Application Platform

 Technical White Paper

1

1. Overview of the Application Platform

The application platform is the foundation on which products are built as well as the interface for

communication between a product and the operating system. It not only encapsulates all the functions

associated with the operating system but also provides a collection of common tools. As an important

generic component, the application platform plays a key role in quick development of high-quality and

cross-platform applications.

The application platform provides a number of common features for the other components. These

features include:

 Cross-platform and low-level support: encapsulates all operations associated with the

operating system, such as Semaphore, atomic operations, shared memory/file mapping, thread,

network operations (Socket), file management, service control, registry access, Inter-process

communication (IPC), server framework and etc. This is the key component for achieving a

cross-platform and multi-platform system.

 Common features: include user authentication and authorization, strong encryption

algorithms based on the PKI infrastructure, common network protocols, binary and charset

encoding conversion, automated script engine, form handling, data compression, task

management, log, audio I/O, audio encoder/decoder, audio effects, HTTP protocol, Web

application extensions and etc.

 Cross-platform data processing functionalities: include a cross-platform report generation

library with support for Excel and HTML formats, a database component with support for ODBC

and ISO SQL/CLI interfaces, and the SQLite database engine encapsulation.

 Distributed Computing: Came up with the nano-SOA architecture and corresponding

supporting components, include: a cross-platform API registration and dispatching framework,

a generic plugin interface. Also, it offers database connectors (DBC) for implementing strong

encryption, data sharding and CAS-based optimistic locking algorithm, and has implemented

common DBC plugins. In addition, it has defined a high available, strongly consistent and high

performance distributed coordination and message dispatch service.

 Cross-platform GUI framework: encapsulates system functions such as windows, controls and

the system message mechanism, and provides a unified and platform-independent framework

for GUI applications.

 Platform-independent support for Internationalization (I18N): provides a

platform-independent multi-language environment for components such as the report

generator and GUI framework.

BaiY Application Platform

 Technical White Paper

2

2. Architecture of the Platform

The application platform is the foundation on which all the other components depend. It offers

platform-independent abstraction between software developers and the runtime environment

(hardware platform, compiler environment and the operating system), and also provides developers

with a set of cross-platform components and frameworks that are reliable, efficient and easy-to-use.

Figure 5

As illustrated in Figure 5, the application platform consists of the following correlated

components:

 libutilitis: encapsulates all fundamental functions associated with the hardware platform,

compiler environment and the operating system, and provides common features and general

frameworks.

 libcrypto: this component was implemented based on libutilitis and third-party cryptographic

and compression libraries. It encapsulates all cryptographic, compression and data encoding

algorithms. Relying on this encapsulation, the libcrypto component has implemented a

collection of common features.

BaiY Application Platform

 Technical White Paper

3

 Data processing functions (DM):

 libreport: this is the cross-platform report generation library implemented on the basis

of libutilitis. It supports a range of file formats like Excel 2.0 (BIFF), Excel XP (ExcelML),

Excel 2007 (xlsx) and HTML, and offers features including customizable templates and

variables, chart generator, and I18N capabilities.

 libodbc_cpp: this library was implemented based on libutilitis. It is a C++ encapsulation

of ODBC/ISO CLI interfaces, and supports features like prepared statement, parameter

binding, zero-copy result set retrieval (result set field pre-binding), and etc.

 libsqlite_cpp: this library was implemented based on libutilitis, libcrypto and the SQLite

engine. It is a C++ encapsulation of SQLite database engine, and supports features like

prepared statement, parameter binding, and VFS-based whole database encryption using

strong cryptographic algorithms.

 libapidbc: this library was implemented based on libutilitis, libcrypto, libodbc_cpp and

libsqlite_cpp. It has defined a set of cross-platform interfaces for common plugins, and

has further implemented a collection of common database connectors. Furthermore, it

has defined a complete set of tools used for managing API registration/dispatching and

requests queuing for communications among the functional plugins.

 User Interface and multi-media libraries:

 libaudioio: this library was implemented based on libutilitis. It provides a

platform-independent audio I/O mechanism, encoder and decoder for various audio

formats, and some general filters. Also, the library provides some common tools like the

audio playing/recording tool.

 libmlgui: this library was implemented based on libutilitis and the wxWidgets framework.

It provides a complete set of platform-independent I18N GUI frameworks and related

common features.

The above mentioned components are discussed in more details in the following sections.

BaiY Application Platform

 Technical White Paper

4

3. Cross-platform Infrastructure - libutilitis

As illustrated in the system architecture, the application platform is at the bottom layer of the

entire product, and libutilitis is the infrastructure for the platform. The main function of libutilitis is to

encapsulate all the details associated with the hardware platform, compiler environment and the

operating system, and to offer a set of easy-to-use, consistent and platform-independent APIs. Based

on these functionalities, the libutilitis library also provides some common tools and frameworks.

Figure 6

BaiY Application Platform

 Technical White Paper

5

As illustrated in Figure 6, libutilitis is composed of three interdependent modules, which are

discussed in the following sections.

3.1 The Base Module - base

The base module encapsulates the details associated with the hardware platform and the

compiler environment, and provides universal fundamental tools for the sysutil and the facilities

module.

When we start to develop a software module, we always want to provide users with the fullest

feature set, the easiest to use interface, and robust, agile and elegant components without

compromising efficiency. Unfortunately, something that can satisfy all these conditions is out of the

current human capabilities. In most cases, we have to painfully compromise some aspects.

Therefore, it is necessary to determine the importance level of each factor before we start to

design. This can help to build consistent and easy-to-understand interfaces. In terms of the base

module, the factors being considered before designing are as follows (in descending order of

importance):

1. Reliability/robustness and correctness: to either execute a task or to inform the user with an

error message explicitly.

2. Efficiency: to improve efficiency to the greatest degree possible, on the premise of ensuring

reliability and correctness.

3. Usability: to make interfaces easy-to-use and easy-to-understand as possible; to provide

obvious prompt in places where unexpected results may occur.

4. Portability: to minimize, to the greatest degree possible, the effort required for porting the

software across underlayer platforms.

5. Maintainability and extensibility: to define a clear inner structure, and to keep system

architecture as easy to extend and maintain as possible, on the premise of guaranteeing the

above factors.

The base module can also be divided into two parts according to their relevance with the

implementation details: bottom layer and interface layer.

3.1.1 Bottom Layer of the Base Module

The bottom layer of the base module handles issues related to hardware characteristics and the

BaiY Application Platform

 Technical White Paper

6

compiler environment. To ensure maximum execution efficiency, the bottom layer is completely

composed of complex macro magics and dozens of typedef.

The bottom layer is the fundamental part of the entire library. All logic judgments are achieved via

plenty of macro magic, which are difficult to use and maintain, though they have completely eliminated

runtime consumption. Users rarely need to use these macros directly, and also should avoid using them

(except for ideographic macros) when possible.

Similar with many of configurable libraries, users can adjust various function and behaviour

options available in libutilitis by defining or changing some on/off macros before compiling it.

3.1.2 Interface Layer of the Base Module

The interface layer is an encapsulation of the low-level implementations, and provides users with

consistent and easy-to-use interfaces. For example,

 Provides transparent INT64 Integer simulation in compiler environments that do not

support 64-bit Integer.

 Provides acquire, release and no barrier semantics atomic operations for 32-bit, 64-bit

and pointer data types. It is preferred to implement atomic operations via

intrinsic/built-in methods provided by the compiler and the inline assembly language.

Atomic operations are currently supported on platforms like x86/x64, IA64, ARM, RISC-V,

POWER, MIPS, and SPARC. For platforms that do not support hardware-level atomic

operations, libutilitis can offer atomic support via operating system API or by simulating

it using a set of mutex with hash collections optimization. If the target platform is an

embedded environment without thread support, all atomic operations will be degraded

as the most efficient and unprotected dummy implementation.

 Provides read & write, read only, and writer only memory barrier operations. Similar with

atomic operations support, it is preferred to implement memory barrier operations via

intrinsic/built-in methods provided by the compiler and the inline assembly language.

The platforms that support atomic operations also support hardware-level memory

barrier operations. For platforms that do not support the latter, libutilitis provides a

simulation using mutex.

For more details about atomic and memory barrier operations, refer to section “Atomic

Operations and volatile Keywords” in my document C++ Coding Guidelines (Chinese

only).

 Provides plenty of identifier macros associated with the platform or compiler. For

http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#原子操作和_volatile_关键字
http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#原子操作和_volatile_关键字
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

 Technical White Paper

7

example, force inline instructions, DLL symbol export instructions, inline assembly

instructions, the current hardware platform, compiler type, and compiler supported

characteristics (e.g., whether the compiler supports template embedding and hash

container), etc.

 Provides a series of optimization instructions associated with the low-level platform, such

as branch prediction optimization, pre-fetch optimization, and register usage

optimization related to hardware platform type.

 Provides a mechanism to guarantee the initialization order of the global objects. C++

language can only guarantee that global objects within the same compiling unit are

initialized in the defined order. There is no guarantee about the order in which global

objects from different compiling units are initialized. For compilers (e.g. GCC) that do not

support customized order for global objects initialization, libutilitis also offers a

compiler-independent mechanism to guarantee the order of global objects initialization.

For further discussions on this topic, refer to section “Threads Safety and

Interdependence Issues with Global Objects Initialization” in my document C++ Coding

Guidelines (Chinese only).

 Implemented a collection of platform-independent call stack back tracing tools, which

can be used to obtain call stack information under the current context or under specified

context. These information include module name, source code file name, line number,

function/method name (supports MSVC/GCC name mangling) and etc.

In addition to the encapsulation of low-level details, a number of fundamental tools are also

implemented within the interface layer. For example,

 Generic handle template (a smart pointer class with reference counting support). In most

cases, the generic handle is designed to replace the traditional C pointer. Its major

characteristics are as follows:

 Automatic management: users do not need to worry about when the resources should

be destroyed and who should destroy them.

 Exception safety guarantees: satisfies RAII (Resource Acquisition Is Initialization)

semantics, and ensures that exceptions will not result in any memory leak or program

error.

 High efficiency: the generic handle has the same efficiency with a pointer for performing

all operations, except creation, destroy, and copy operations. Even while performing the

latter operations, only maintenance of reference counting is added.

 Error prevention: the generic handle can effectively avoid memory leak and other

program errors, and has dramatically simplified program design associated with pointers.

http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#全局对象初始化时的线程安全性和相互依赖性问题
http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#全局对象初始化时的线程安全性和相互依赖性问题
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

 Technical White Paper

8

 Customized destroy strategy and NIL value: programmers can customize the destroy

strategy (the default is to use delete operation) and the NIL value (set to NULL by

default). For example, for templates that deal with file handles, programmers can set the

destroy strategy as calling the file close function, and specify the NIL value as something

like INVALID_HANDLE. Customized NIL value and destroy strategy are introduced in as

template parameters and are bound with instances while compiling, so they will not add

any processor and memory consumption at runtime.

 Support for static handle (binding without ownership)

 Support for construct with DontInit indicator, which helps to create efficient local static

object with multi-thread safety. For more details about this topic, refer to section

“Thread Safety Issue with Local Static Objects Initialization” in my document C++ Coding

Guidelines (Chinese only).

 Users can specify reference counting variable type by the template parameter. This helps

to ensure multi-thread safety when using atomic variable type (the default value) to

completes reference counting. When thread safety is not required, users can choose to

implement a reference counting mechanism using primitive Integer type that has better

performance.

 Temporary handle template: similar with the generic handle template, temporary handle

template also obeys RAII semantics, customized destroy strategy and NIL value, and other

characteristics. The only difference is that the temporary handle does not support reference

counting, so users need to explicitly release ownership in order to pass pointers. Different

with the generic handle which is often used to pass objects between functions or threads, the

temporary handle usually guarantees RAII semantics and security (when an exception occurs)

for a single function or code block. Because reference counting is not needed, the temporary

handle has exactly the same efficiency as primitive pointers with respect to all operations.

 basic_buffer: the basic_buffer template is an efficient buffer management tool compatible

with the basic_string template within the C++ standard library. It is fully compatible with STL

basic_string, but offers higher space and time efficiency and a more fine-grained storage

management mechanism. Thanks to the support for a collection of technologies like

reference counting, copy-on-write, memory reallocation, buffer pre-allocation and static (no

ownership) buffer, basic_buffer can offer much higher efficiency than basic_string.

Furthermore, there is a specialised template class which is specifically optimized for BLOB

(basic_buffer<BYTE>) objects.

 String extension class: provides extension capabilities for basic_buffer or basic_string, such as

streaming operations, type conversion, common string parsing tasks, various inverse

operations, BRE/ERE/ARE (TCL 8.2) regular expressions with Unicode charset support, and

escape operations on the basis of callback or symbol table, and etc.

http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#局部静态对象初始化时的线程安全性问题
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

 Technical White Paper

9

 High-efficiency linked list node template: the CListNode template has encapsulated the node

operations associated with doubly linked list. Compared to std::list, CListNode provides O(1)

time complexity and more flexible linked list usage like node separation, node exchange and

node moving without the need for memory reallocation. When there is a need to use linked

list, users should first try to use the std::list container. Only when the std::list container

cannot satisfy the requirements, users can consider using CListNode to implement dedicated

linked list.

 LRU Cache template: the template is a buffer manager powered by the LRU (Least Recently

Used) algorithm. It supports a complete collection of operations like settings, delete, match,

traversal and management. Users can choose to perform key-value indexing and matching

using hash table (hash_map/unordered_map), B tree (std::map) or any STL compliant

containers. This buffer manager utilizes CListNode for maintaining an efficient LRU list.

 Other extensions of standard library, including: the fixed_vector template which utilizes static

buffer area and is compatible with std::vector, a circular buffer container that is compatible

with std::deque, wrapper class of standard C library’s file operations, universal pointer and

subscript based iterator encapsulation, various member function adapters, and etc.

 Encapsulation of exceptions processing: this encapsulation obeys the RAII semantics and is

used to handle unexpected exceptions as well as exceptions occurred with operator new and

operator delete. For more details about this topic, refer to sections “Exceptions” and “C++

Exceptions Mechanism Implementation and Consumptions Analysis” in my document C++

Coding Guidelines.

 Error handling mechanism: libutilitis can capture all unprocessed fatal errors within

applications, and output them to the global logger object. These errors include:

 C++ runtime errors, such as unexpected exceptions or exceptions that are within an

exception;

 Errors reported by the operating system, such as memory access violation.

Meanwhile, the current function call stack under the problematic context will also be output

to the global logger object together with the errors.

In conclusion, the base module has encapsulated all the fundamental features associated with the

low-level platform and the compiler environment. The libutilitis library and all other modules within

the application platform highly rely on the fundamental tools defined by the base module.

http://baiy.cn/doc/cpp/index.htm#代码风格与版式_异常
http://baiy.cn/doc/cpp/inside_exception.htm
http://baiy.cn/doc/cpp/inside_exception.htm
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

 Technical White Paper

10

3.2 System Utilities Module－sysutil

The system utilities module is built on the basis of the base module, and has encapsulated all

functionalities associated with the operating system. It offers a platform-independent, easy-to-use and

reliable interface for users to interact with system functions. The factors being considered before

designing this module and their importance levels are the same as those for the base module.

The design goal of the system utilities module was to encapsulate the great majority of common

services provided by the operating system and hardware platform. This module provides corresponding

interfaces for almost all the features and functionalities that can be found in traditional operating

system textbooks. For example:

 Process control, including:

 Create process (e.g., sub-process creation with user impressing, input/output

re-directing, hidden process creation);

 Terminate process and wait for process being terminated;

 Preemptive settings as well as settings like priority level, scheduling algorithm, and CPU

affinity;

 Set limits for resources like memory and file handle;

 Query process information, include: resource usage such as CPU time and memory size;

modules loaded by the processes; processes loaded by the system; and memory

mapping information, etc.

 Look up belonged module using a given address. For example, look up the dll/so module

that provides function calling according to a function pointer).

 Thread and TLS: support operations like create, run, suspend, continue, stop, kill and etc;

preemptive settings as well as settings like priority level, scheduling algorithm, CPU affinity,

and the ideal processor; retrieve status and statistics information of a thread; relinquish

remaining time slice of current thread, or forcibly switch to another thread; create and access

TLS storage.

 Coroutine: also known as fiber, co-process, and user thread, coroutine is a concurrency

mechanism more lightweight than thread. The libutilitis library supports a complete set of

co-routine operations, and also offers a runtime environment based on thread pool with basic

FIFO scheduling algorithm supported. By deriving a new class, users can easily specify

runtime environment and scheduling algorithm according to their own requirements.

 Synchronization mechanisms like semaphore, mutex, and event (condition variable).

Moreover, libutilitis offers high-speed synchronization mechanisms like Futex, fast semaphore

and spinlock for platforms that support hardware-level atomic operations. Futex has

BaiY Application Platform

 Technical White Paper

11

implemented full user-mode mutex that supports recursive calls, thus most of the user mode

and kernel mode switch of the lock/unlock operation could be eliminated. This has

substantially improved its working efficiency. Compared with Windows Critical Section, Futex

provides a broader range of features (such as timeout waiting) and slightly higher efficiency.

Fast semaphore has similar advantages over semaphore. Both Futex and fast semaphore

within libutilitis support spinlock operations, and can automatically detect the amount of

online processors in the current environment and fallback to the standard mode in a

single-processor environment. On platforms that do not support hardware-level atomic

operations, fast semaphore performs equally to normal semaphore, and Futex is the same as

normal mutex. So users can always retain the most efficient synchronization method

(platform-independent) without further code changes.

 Dynamic library (dll/so) loading tool: a platform-independent tool used for loading dynamic

library and locating API entry.

 Synchronous & asynchronous I/O operations on files, network, and communication devices:

libutilitis has encapsulated I/O operations associated with files, network (socket, support for

IPv4 and IPv6), and communication devices like serial port, parallel port and pipeline. It also

offers a set of platform-independent asynchronous I/O frameworks (see the following

sections).

 File mapping and shared memory: supports access control like read, write, execute and

Copy-on-write (COW), and allows users to build file mapping or shared memory at specified

base address.

 Directory management: contains a complete set of tools used for disk volume and directory

management. It supports:

 Traversal/copy/move/deletion of directories, files and sub-directories, manipulate

properties and authority settings of them.

 Retrieve of disk volume topology and file system information, as well as detailed

information of all currently mounted volume devices.

 System clock, time zone, DST rules and time span operations: libutilitis provides a complete

set of operations associated with time and calendar, and supports high precision performance

counter operations.

 High precision timer: this has encapsulated a high-precision and periodic timer mechanism

provided by the operating system.

 System log: send log messages into syslogd (unix) or System Event Service (Windows).

 Service manager: add/delete/manage services and drivers within the current platform or

within the specified computer (currently windows only).

 Service (Daemon) framework: a platform-independent framework used for developing

Windows Service or Unix Daemon.

BaiY Application Platform

 Technical White Paper

12

 Charset encoding conversion: supports Windows API, POSIX libiconv, IBM libicu and ISO C

locale API; can automatically select the best encoding converter according to charset

encoding and the current settings of the specified platform.

 Acquisition of platform information: different with the macros that are predefined in the base

module, libutilitis offers a tool used for dynamically acquiring information of the current

platform during runtime. The information include operating system type, product series,

version number, Service Pack/Patch number, system uptime, memory page size, CPU

type/width, CPU byte order, the number of processors, and etc.

 Registry access, terminal (textual user interface) control and other commonly used features.

 Memory validation (for read/write/execute), system management (log off, shut down, restart),

environment variable expanding and other miscellaneous features.

On platforms that do not support some specific features, the sysutil module also provides a

transparent simulation layer for users. For example, a virtual registry implementation (fully compatible

with the Windows registry) is provided on platforms that do not support registry operations. These

features can be compiled across platforms and can automatically switch to the implementation that is

best suitable for the current platform. For example, system offered registry service is preferred for use

on Windows platform, and the virtual registry service provided by libutilitis is used for other platforms.

In addition, the system utilities module has also supplied some application frameworks that are

closely related to the low-level platform. For example:

 The system services framework has encapsulated the standard workflow and working model

for service programs. Applications that are built upon this framework behave as a Daemon in

POSIX environment. However, in Windows, they act as a service and co-work with the System

Service Manager.

 Efficient I/O framework which will be discussed in the next section.

System-level frameworks and tools have provided big help for building some critical applications.

They have considerably reduced the cost for cross-platform transplanting, and also have improved

development efficiency as well as code quality through high-density code reuse.

Though libutilitis should offer features as consistent as possible across platforms, but apparently

there are still some differences cannot be avoided. The service manager is the most typical example.

WinNT series platforms provide a service manager to manage all the background services and drivers

within the current system. Similar mechanism does not exist in most POSIX environments (such as

un*x/linux) and DOS environment. Obviously, it is hard to implement simulation of similar features

without operating system support, because this involves interactions with the other system

components.

One key principle for designing the libutilitis library is to achieve reliability, correctness and

BaiY Application Platform

 Technical White Paper

13

completeness. We can choose to not include some features in libutilitis, but once we provide a feature

to users, we must guarantee this component can perform correctly and stably. For some specific

features, libutilitis can either not to include them, or provide a complete set of clear interfaces. For

example, libutilitis will never provide a directory access class that does not support file/sub-directory

traversal. This guarantees users will never be forced to bypass a component within libutilitis and

implement the features again by themselves because that component is lacking of some basic

functionalities.

Based on the above principle, few components within the libutilitis library may be unable to

implement fully transparent cross-platform capabilities. See the User Guide for the libutilitis library for

more details.

The base module and system utilities module together have encapsulated most of the services

associated with the platform. In real projects, however, there are chances that users need to directly

access operating system features and hardware resources. For example, when the project relies on a

third-party COM component, or when hotspot codes needs to be optimized using inline assembly

language.

One of the most attractive characteristic of C/C++ languages is, they have simultaneously provided

easy-to-use high-level language, standard libraries with a broad function list, premium efficiency, and

the capability to directly access the low-level hardware. The design goal of libutilitis is never to set

obstacles in executing these tasks, on the contrast, libutilitis is dedicated to provide a set of tools that

can help users to achieve their design goals in a more elegant and portable way.

The libutilitis library is intended to offer users a set of platform-independent implementations that

are complete, efficient and reliable. We truly understand that lacking of any of these conditions will

force users to bypass libutilitis, and turn to implement some functions (that has key importance to

them or their projects) by themselves. While substantially reducing direct interactions with the

low-level platform, libutilitis can also help users to complete those inevitable interactions in a more

structuralized and controllable way.

For example, the library contains macros that can be used to identify:

 compiler manufacturer, version, and whether the compiler and standard library supports

specific functionalities;

 the operating system on the target platform;

 CPU type/width and CPU byte order, and etc.

The library also contains other macros that can be used encapsulate different inline assembly

syntax in various compilers, and the tools class that is used to dynamically acquire platform type and

version information during the runtime.

BaiY Application Platform

 Technical White Paper

14

The libutilitis library can perform a great majority of common tasks on behalf of users, and help

users to achieve those inevitable interactions with the low-level platform in a more convenient, elegant

and portable way. These have finally resulted in a more concise, robust and easier to maintain product.

3.2.1 High performance I/O Framework

High performance I/O framework has encapsulated a high-concurrency, high-load and

multi-threaded I/O server model. In general, the current I/O models can be classified into the following

major types:

 Model 1: multi-threaded and synchronous blocking I/O model. Use “one connection per

thread/process” design. As the most basic, easiest to implement and least efficient I/O servo

model, it is utilized by the famous apache web server. It has the following major problems:

 Creating a thread/process for each connection results in high consumption. When there

is high-concurrency, a great majority of server resources are mainly wasted on frequently

creating and switching threads/processes.

 Weak defence against DDoS attacks targeting high-concurrency and slow requests.

 Lack support for applications that need to maintain many keep-alived connections

concurrently (every connection will occupy a thread or process for a long time).

 Model 2: high-efficiency poll (epoll/kqueue/event ports…) mechanism with synchronous

non-blocking I/O model. Multi-threaded and “one ready connection per thread” design. It

utilizes the efficient polling interface provided by the operating system to periodically wait for

some connections within a connections collection to become usable, and then performs

non-blocking read and write on the usable connections. That is, read data from the receive

buffer of the low-level protocol stack or copy data to the send buffer of the protocol stack.

Finally, it enters waiting status again using the polling interface. The advantage of this servo

model is: it can use a few threads to process a large amount of concurrent connections,

achieving high space and time efficiency. Its disadvantage is, the programming model is

complex and relies on specific API provided by the operating system.

 Model 3: this model is characterized as asynchronous I/O, multi-threaded, and the “one

active connection per thread” design. In this servo model, applications submit required I/O

operations to the operating system and after the operations are complete, the operating

system will notify applications through a callback mechanism. Theoretically, this is the most

efficient I/O servo model. The reason is that applications can submit the memory address to

be transmitted to the low-level hardware, which will complete the I/O operations directly at

this memory location using DMA. This has implemented zero-copy. After the operations are

complete, the hardware will trigger an interrupt request to the operating system, which will

then callback the application. This mechanism can avoid polling waiting and connection

BaiY Application Platform

 Technical White Paper

15

collection maintenance operations in model 2. Furthermore, by submit multiple I/O requests

to the underlayer driver simultaneously, there is possibility for the operating system and the

low-level hardware to merge operations (merge several messages into a single network frame

or disk I/O request to complete read and write) and to optimize request order (the disk head

begins read/write requests from the nearest track). The major disadvantage of this model is

the complex programming model. Besides, its actual performance depends on the

implementation method of the operating system.

Theoretically, the asynchronous I/O architecture utilized by model 3 offers the highest I/O

efficiency. In practice, its actual efficiency highly depends on how the operating system implements the

AIO mechanism. For example, both Linux and Solaris do not support real kernel -level socket AIO

operations. All asynchronous I/O operations on these systems are user-mode simulations using

multi-threaded synchronous blocking I/O operations (i.e., model 1). We can predict that using the AIO

services provided by these systems can only result in serious performance degradation.

On the other hand, high-efficiency polling interfaces like epoll, kqueue, port_get, /dev/poll and

pollset have achieved the O(1) level constant time complexity in their corresponding systems.

Moreover, a majority of modern operating systems have implemented (partially) zero-copy

non-blocking I/O operation using reference counting and Copy-on-write (COW) mechanisms of memory

page. Thus, in real production environments, we need to conduct extensive performance tests an d

kernel source codes analysis, in order to determine which I/O model can offer highest efficiency for the

current platform.

The high performance I/O framework implemented by libutilitis offers a platform-independent I/O

mechanism, and always attempts to choose the most efficient I/O servo model for the current platform.

To be specific:

 Use overlapped I/O + IOCP on WinNT series platforms (NT/2k/xp/2k3/Vista/2k8/Win7 and the

like).

 Use overlapped I/O + Event on WinCE series platforms (WinCE/WinMobile).

 Use POSIX AIO + Realtime Signal on posix platforms that support kernel-level AIO, such as

FreeBSD/Apple Mac OS X/HP-UX/IBM AIX. However, there are exceptions to network AIO

(Socket AIO), because different operating systems have different implementation for

high-concurrency I/O. These exceptions are:

 On FreeBSD, Socket AIO is implemented using kqueue.

 On HP-UX v11, Socket AIO is implemented using /dev/poll.

 On IBM AIX v6.1 and above, Socket AIO is implemented using pollset.

 On all other platforms, AIO is implemented using POSIX AIO + Realtime Signal.

 Use non-blocking I/O and epoll on Linux.

BaiY Application Platform

 Technical White Paper

16

 Use non-blocking IO and kqueue on NetBSD/OpenBSD/DrangonFly.

 Use non-blocking I/O and Event Completion Framework on (Open)Solaris.

 Use thread pool and blocking I/O simulation in environments (such as RTEMS/eCos/DOS) that

do not support any of the high performance I/O models.

3.3 Common Facilities Module - facility

The common facilities module is built on the basis of the base and sysutil modules, thus it has

naturally achieved platform independence. It provides the fundamental algorithms, functionalities,

design patterns and frameworks, which are mainly used to simplify project building and to improve

code re-usage. The following is a list of facilities offered by this module:

 Various commonly used synchronization algorithms: a RAII confirmed encapsulation of various

synchronization algorithms like critical section, full synchronization locks, Reader/Writer locks

and Producer/Consumer locks, and their corresponding optimized variants like fast Semaphore,

Futex and spinlock optimizations.

 Time, time span and calendar tools with time zone and Daylight Saving Time (DST) rules, and

corresponding time zone and DST rules interpreter.

 Command line interpreter with support for complex syntax.

 Message queue with multi-thread safety: an encapsulation of a high-efficiency message queue

mechanism used for inter-thread communication. This can be implemented using std::deque,

std::list, std::priority_queue (priority queue) and circular queue which are defined in the base

module, or several other containers (specified as template arguments). The queue uses

Producer-Consumer algorithm, and offers a list of variants that are optimized for different usage

cases (specified as template arguments, such as variants using futex and spinlock).

In addition to the traditional message queue, libutilitis has also implemented a message queue

that allows unlimited writing by producers. However, if generation speed exceeds the speed of

consumption, which has caused the queue to be full, then the newly generated elements will

replace the oldest unconsumed elements from the queue. This kind of message queue is mainly

used in situations when there is high requirement for responsiveness but no requirement for

reliable message delivery.

 Logging mechanism: libutilitis provides a graded logging method, which allows users to set the

lowest level (lowest urgency) allowed for recording events for logger objects. Each logger object

can be bound to several loggers simultaneously. A logger represents a class of data targets used

for storing logs, such as windows, files, system logging service, and etc. When the user writes

BaiY Application Platform

 Technical White Paper

17

logs into a logger object, these logs will be distributed to all the loggers that are bound with this

logger object. The libutilitis library has implemented various types of loggers including files,

terminal windows, standard output device, periodic files, memory buffer, network connection,

system logging service (Windows Event Log service and UNIX syslogd), and standard log servers

talking syslog protocol (RFC 3164). Users can also easily implement their own loggers through

simple derivation.

Logger objects also support a tool called filter, which provides a callback mechanism, monitors

and filters logs for the current object, and decides whether a log message is allowed to be

recorded. The libutilitis library has provided log filters based on wildcard and regular expression.

Users can also easily implement their own filter mechanism.

Logger objects support logging messages in a non-blocking manner, to improve concurrency and

to mitigate the delay and performance degradation caused by log message surge. In

non-blocking model, applications submit log messages to a message queue, and the logger

object will complete all filtering and recording tasks within a separate thread. Users can

continue working with no need to wait for the logs to be written into the recording device (e.g.,

disk, network, and screen).

 Modem control (AT commands on serial communication): supports a full range of AT commands,

time-out operations, and dial-up and back-to-back connections (used for long-distance and

narrowband transmission at a low cost).

 Reliable Session Protocol (RSP, based on TCP and serial communication) defined by Bell Labs is

widely used in Avaya switches and other high reliability areas. RSP protocol maintains its own

receive & send windows, and has implemented re-send upon timeout, heartbeat detection, and

flow control algorithm based on message window and real-time RTT auto adapting.

 Efficient and message-based session-layer protocol: this is implemented via two methods. The

AIO version is implemented on the basis of the High Performance I/O Framework provided by

libutilitis, and is ideal for high-concurrency and high-load environments like large-scale servers.

The synchronous I/O version is easy to use, and is applicable to client and low-load servers.

 HTTP and FTP clients: supports passive FTP mode, HTTP Keep-Alive Connection, SSL/TLS, and

HTTP/FTP/SOCKS agents.

 A Web framework that is based on the efficient I/O framework as well as HTTP/FastCGI/SCGI

protocols (see the following sections for more details).

 Keyword tree and keyword tree with matching rules: keyword tree is a common container that

is usually used for hierarchical prefix match for certain type of key value information, such as

automatic completion and area codes matching. Keyword tree with matching rules has the

BaiY Application Platform

 Technical White Paper

18

same behaviours with normal keyword tree. The exception is that the token added into the tree

can be divided into two halves by the specified delimiter. The first half uses standard keyword

tree match. After the first half is matched, several times of matching by user-defined rule will be

performed on the second half (e.g., rules of regular expression). The item can be deemed to be

a real match only when the rules are satisfied.

 Timer: different with the high precision timer that is within the sysutil module and is based on

operating system related services, the timer here is implemented using timing threads that are

maintained by libutilitis itself. The reason for implementing this timer is that the high precision

timer provided by the operating system usually causes high consumption of resources and the

total number of triggers is limited. For example, each process on Windows platform can create a

maximum of 16 high precision triggers simultaneously. Moreover, creating high precision trigger

will also change the hardware clock interrupt frequency, thus decrease the overall system

performance.

The timer provided by libutilitis can support a lot of timer tasks triggered periodically. It also

supports timer groups: namely, all timer-triggered tasks are divided into several groups by type,

and each group of tasks run on a dedicated timing thread without interference other groups.

The advantages for doing this include:

 Running different timers on different threads can eliminate mutual blocking between

timers.

 Users are allowed to specify different timer resolution and priority level for different

threads.

 Users can enable the timer calibration feature for timer groups that require high precision

(millisecond level). When this feature is enabled, the triggering interval will be calculated

based on factors like actual blocking interval and actual consumptions of executing the

periodicity tasks.

 Task manager (based on the timer): the task scheduling component consists of two parts: the

task manager and planned tasks. They provided very similar functionalities with the timer. In

fact, the task manager itself is implemented on the basis of the timer. Each application can

contain any number of timer threads (but most applications need only one timer thread). In

each timer thread, there can be any number of timers. As a special type of timer, each task

manager can contain any number of planned tasks to be executed.

Offering the above three levels of timer mechanism is not something done on a whim, but is the

result of observation on real use cases. The reason for offering several timer threads is already

described in details in the descriptions about the timer. Here we will discuss the difference

between using task scheduler and using the timer directly.

BaiY Application Platform

 Technical White Paper

19

 Timer can be triggered only at specified intervals. However, the triggering condition for

scheduled tasks can be quite complex.

 It is hard to achieve co-working among several timers. However, scheduled tasks can be

grouped by type and the groups can easily co-work with each other (usually, each group of

tasks are managed by a dedicated task manager).

 Scheduled tasks can be executed by the order of priority, but timers do not support this.

 Scheduled tasks are usually created in heap and are maintained using smart handle. They

support “fire and forget” semantic. Users just need to create tasks, and do not need to

worry about when they should be destroyed and who should destroy them.

 Message processing framework: this has defined a common message processing framework

that supports the Chain of Responsibility and command patterns, and has implemented

message pre-processing and message dispatching mechanisms.

 Prototype factory: this has defined an efficient prototype factory framework that is

implemented using balanced binary trees or hash tables.

 Persistence framework: this defines an object persistence (serialization) framework, and has

implemented two storage formats for collection serialization, one supports random access, and

the other is mainly used for long-term archiving. Persistent data can be written into any data

sink and read from any data source.

 Virtual registry (CConfig): it provides Windows registry simulation service. The main

characteristic of virtual registry is, it is implemented on the basis of ISXF format, which is a

platform-independent binary format. This guarantees:

 Platform-independence capability and superior read & write performance of data

accessing.

 I18N capability: strings within the virtual registry are all saved in Unicode (UTF-8). This

guarantees that issues like garbled texts displayed/saved and incorrect data will never

occur in any language environment.

 High efficiency: after the virtual registry is loaded, all subkeys and values are stored in the

balanced binary tree. This can ensure high efficiency even when searching in or accessing a

large data set.

 The CConfig component also provides the ability to calculate the difference between any

two objects. The difference data (including records such as addition, modification, and

BaiY Application Platform

 Technical White Paper

20

deletion of values and subkeys) are stored in a compact and efficient binary format. The

difference data can be applied to the specified CConfig object to implement version control

functions such as version rollback and multi-version management. The CConfig component

also supports the conversion of binary differential data into human-readable summary text.

This makes it easy for applications to implement administrative functions like revision

review and change auditing.

 Support for importing/exporting data from/to CSV, INI, JSON, and XML files, and import

and export operations between the virtual registry and Windows registry.

CConfig Schema has been widely used for communication between different systems

(subsystems), because it has a bunch of advantages: high efficiency,

platform-independence, I18N, self-explanation, extensibility, flexibility, and the support for

CSV, INI, JSON, XML and other common data formats. In addition to the CConfig

configurations editor tool, we also provide CConfig development kit for commonly used

languages like JavaScript, C/C++, Java, .NET (C#, VB.NET, J#, and etc.) and PHP, for the

purpose of reducing cost for partners and third-party developers.

For more details about CConfig, see sections 6.2.4 Universal Graphic Controls, 6.3 CConfig

Language Binding Component, and 6.4 JavaScript Tools Library - libbaiy .

 String-matching rules: each string-matching rules table can contain any number of

string-matching rules. Users can specify the string to be matched based on the rules collection.

The matching rules currently supported by libutilitis include: range, wildcard, regular expression,

enumeration, and etc.

 Thread pool: to create and management thread pool objects that can be adjusted dynamically.

 Common data processing framework: libutilitis has defined a high performance data processing

framework that supports zero-copy and provides a broad range of data sources and data sinks,

such as source and sink that are based on files, network, serial port, object queue, and memory

buffer. The framework has also implemented various filters such as container filter and T filter.

The libaudioio library, which we will discuss in the following sections, is implemented using this

framework.

 Virtual File System (VFS): it is an abstraction framework. Anything like a folder that contains

files can be encapsulated as a virtual volume. There are two types of VFS virtual volume:

encapsulated virtual volume and file-based virtual volume.

The encapsulated virtual volume implemented by libutilitis contains standard disk directory,

FTP-based VFS and HTTP-based virtual files. The libutilitis library has also defined a basic

file-based virtual volume, which can pack a folder containing any number of files and

BaiY Application Platform

 Technical White Paper

21

subdirectories into a single file to be accessed as a VFS. It is also allowed to add metadata of any

complexity for each file and directory (by attaching a virtual registry on it). Furthermore,

libutilitis provides a virtual volume implementation that is fully based on memory, which is

specifically useful for creating temporary data and implementing memory cache.

A virtual volume can contain other virtual volumes, and allows nested access with zero

performance loss. Additionally, libcrypto has defined a file-based virtual volume that supports

compression and strong encryption on-the-fly (see following sections for more details).

 Runtime environment manager: it provides the following common runtime functionalities:

 Environment variables management: maintains an internal environment variables system

own by the application itself, and provides traversal and string expanding services. The

variables manager supports recursive resolution of environment variables and

referencing of system environment variables.

 File deletion reservation: users can reserve a deletion before creating a temporary file.

This can ensure this file is deleted the next time the relevant application is launched (at

the latest), even when the system has got a serious problem such as power down. The

file deletion reservation service guarantees transaction-based completeness.

 Temporary file creation: to create and open a temporary file atomically.

 IP network list based on IP address and mask: IPv4 and IPv6. Supported operations include

matching, traversal, add, delete, serialization, and etc. This can be used for implementing

whitelist and blacklist.

 Inter-System eXchangeable Format (ISXF) read/write operations: Inter-system exchangeable

format is a platform-independent, self-explanatory binary data encoding. It is mainly used for

data serialization and information exchange over network. The ISXF encoding is inspired from

data exchange schemes like SUN XDR (NDR/RPC) and ISO/IEC/ITU ASN.1 2002 DER/BER. ISXF is

specifically optimized for Intel and recent ARM, RISC-V and MIPS processor architectures (LE

byte order). ISXF format message can be read from any data source and be written to any data

sink.

 Variant data type (CVarType): it is mainly used for situations that require use of dynamic types,

such as highly abstracted data interfaces. Like the traditional VARIANT and _variant_t, CVarType

has implemented dynamic type operations that are similar to those in JavaScript. The difference

between CVarType and other implementations (like _variant_t) is, CVarType eliminates the need

for resolving issues like inter-process or inter-language message passing, thus it has

implemented efficient zero-copy message passing using reference counting and Copy-on-write

technologies. This can dramatically improve space and time efficiency.

 Platform-independent language resource pack and a multi-language control framework based

BaiY Application Platform

 Technical White Paper

22

on Observer (publish/subscribe) pattern. The matching of any language resource is O(1)

complexity, and each item in the language pack can contain any number of titles, tips, help

information, and additional data resource. The language pack can automatically complete tasks

like encoding conversion and font matching according to the current runtime environment.

 Efficient CSV/JSON generator and parser: uses iterative algorithms and a manually optimized

lexer, which allow big files to be generated and parsed efficiently at low overhead.

 Stack operations based on files and data blocks.

 Periodic file operation: provides a file handling class that can automatically perform periodic file

creation (daily, weekly, monthly, and etc.). It also allows users to specify the maximum number

of files that can be retained. This component is often used as the log facility for long-term

running services.

 Encapsulation of file-like read/write operations from/to dynamic and static memory buffers.

 Generic data query object: this has defined a generic query statement, namely, (restrictions)

AND (query condition) + Sort Criteria + Limit/Offset limitation + advanced options. The

“restrictions” and “query condition” can be composed of any number of sub expressions, each

of which can contain operations like equal to, not equal to, belong to, more than, more than or

equal to, less than, less than or equal to, wildcard matching, and regular expression matching.

The data query object is responsible for completing validity check on the operations.

Additionally, several sub expressions can be concatenated using conjunctions like AND, OR and

predicates like NOT. AND operations have higher priority over OR operations, but parenthesized

expressions are supported for the purpose of re-defining priority for operations. In the Sort

Criteria, users can specify any number of fields to sort them in ascending or descending order.

The purpose for adding a separate “restriction” is to help users to implement functionalities like

data access control.

 Data query engine: the query engine will perform syntax analysis, semantics analysis, and

Intermediate Code generation and optimization, and will execute query on the final abstract

tree. It uses “parenthesized expression > AND > OR” priority order to perform parsing and

evaluation on the expressions, and also supports short-circuit expressions (short-circuit

evaluation). To guarantee generality and flexibility, the evaluation of sub expressions can be

completed by user-supplied visitor.

In addition to making applications database-independent, the query engine also provides a

variety of advanced characteristics that are not supported by SQL language, such as ARE

(Advanced Regular Expressions) query with support for Unicode charset, join query with

BaiY Application Platform

 Technical White Paper

23

support for nested tables, mixed query of business data and configuration data, virtual field

query, and other customized queries.

Similar with the other components within the platform, the query engine was implemented

using C/C++, and its hotspot codes were optimized using assembly language for mainstream

hardware platforms. Its high efficiency and reliability have been verified in the real production

environments of many Fortune 500 companies. Even when the optimization methods of

short-circuit expressions is disabled, 13 millions times of evaluation of logic expressions (A and B

or C and D) per second can be achieved on a ThinkPad W510 notebook (having 4 cores and 8

threads) produced in 2010, using single core and single thread only (Intel Core i7 1.6GHz).

 Search Helper: converts the specified string into a format that can be easily searched, including

removing all punctuations, converting characters to lowercase, and creating abbreviations. For

example, the string "_Steven.Jobs_" will be converted to 'steven jobs' and 'sj'.

In addition, the Search Helper can convert hieroglyphics to its Latin expressions, and can

support various languages. For example, it can convert specified Chinese characters into

different Latin expressions like Hanyu Pinyin (PRC), Taiwan Pinyin, Japanese Romanization, and

Korean Romanization, so that they can be easily searched. For example, "Calvin·赵" will be

either converted to 'calvin zhao' and 'cz' using Hanyu Pinyin (PRC), and or converted to 'calvin

jhao' and 'cj' using Taiwan Pinyin. Similarly, "13 叔" will be convert to '13 shu' and '13s'.

For characters that have several pronunciations, the Search Helper will output all possible

combinations. For example, the string "单田芳" will have results 'chan tian fang', 'dan tian fang',

'shan tian fang', ‘dtf’, ‘ctf ’, and ‘stf ’.

The design goal of the common facilities module was to achieve the followings by improving

component-level reuse:

 Help users to further simplify and complete regular tasks.

 Reduce code bugs.

 Reduce the difficulty of code writing and code maintenance.

 Improve the average expression ability of each line of the code.

All advanced characteristics of C++ other than the templates have been avoided intentionally in

the base and sysutil modules, though they can be used appropriately in the facility module. The

purpose is to eliminate additional consumption caused by the followings: virtual function “one pointer

member per object” and “one base-offset reference per call”; type_info static linked lists traversal and

comparison associated with RTTI; virtual base “one pointer member per object” and virtual base

members indirect addressing. For detailed analysis of the advanced characteristics of C++, refer to

section “Consumption analysis and usage guidelines for RTTI, virtual functions and virtual base class”

http://baiy.cn/doc/cpp/inside_rtti.htm

BaiY Application Platform

 Technical White Paper

24

(Chinese only) in my document C++ Coding Guidelines (http://baiy.cn).

3.3.1 Web Framework

The libutilitis library supports multiple Web protocols, including HTTP (RFC2616), FastCGI

(www.fastcgi.com), and SCGI (www.python.ca/scgi/). The following table compares the features and

capabilities among these protocols.

Protocol High Perf. I/O Framework Synchronous I/O + thread pool Support for Keep-Alive

FastCGI Yes Yes Yes

SCGI Yes Yes No

HTTP Yes Yes Yes

As shown in the above table, libutilitis provides all the three protocols with two implementation

methods, namely High Performance I/O Framework and “synchronous I/O + thread pool”.

Synchronous I/O + Thread Pool Architecture

The “synchronous I/O + thread pool” server model is mainly used to easily implement low-load

Web applications. Figure 7 shows how this server model works.

http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/
http://www.fastcgi.com/
http://www.python.ca/scgi/

BaiY Application Platform

 Technical White Paper

25

Figure 7

As shown in Figure 7, the Web application framework, which is based on “synchronous I/O +

thread pool”, comprises three main parts, namely listener threads pool, Web requests queue and

worker threads pool.

Listener threads pool waits for a Web request that is sent from the reverse proxy or browser, and

completes initialization tasks associated with this request. Then it puts the request to the end of the

Web requests queue, and continues to listen for the next request. All these tasks are completed by a

separate thread pool to improve concurrency under high-load situation. The maximum number of

threads in the listener threads pool is customizable by the user, and can be dynamically adjusted

BaiY Application Platform

 Technical White Paper

26

according to load pressure.

The Web requests queue arranges all pending requests in a queue. In segmented processing mode

(see below), the Web requests queue also lines up intermediate requests that are not fully processed.

The maximum size of Web requests queue is customizable by the user.

The worker threads pool continues to pick up pending requests from the front of the queue, read

and process messages that are sent from the client, generate a response, and return results. The pool

can be adjusted dynamically according to current load status and user configured parameters. When

the pool is in low-load or idle status, the number of worker threads will be reduced to the minimum

value specified by the user. When high-load status persists, the number of worker threads will increase

gradually until the maximum value specified by the user to provide extra concurrency capability. When

load pressure continues to decrease, the framework will gradually reclaim idle worker threads until the

minimum value specified by the user. Worker threads reclaiming strategy is configurable by the user.

Depending on applications, the “Synchronous I/O and thread pool” based Web application

framework supports two servo models:

 Blocking I/O model: in this model, once a Web request arrives, the worker thread will

complete the whole process including read, analysis, calculation, results generation and

response returning. The worker thread will not process the next request until the current

request is fully processed. The Blocking I/O model is the simplest servo model and also the

easiest one to implement, but it has the disadvantage of low concurrency in high-load

complex applications.

 Segmented handling model: in this model, each request will be divided into several segments.

Once a segment is processed, the worker threads pool will put that request and its related

working status at the end of the queue, and then it will pick up the next request from the

head of the queue. Compared with Blocking I/O model, this model can provide better

balanced assignment of server resource and network bandwidth, but it needs to save users’

intermediate state.

High Performance Asynchronous Web Framework

Using the High Performace I/O Framework provided by the sysutil module, libutilitis has

implemented an efficient asynchronous Web framework which is based on asynchronous I/O and

callback. This framework can easily support tens of thousands of concurrent connections even on an

outdated AMD AthlonXP 2600+ (single-core/single-thread @1.8GHz) machine manufactured in 2002.

On an entry-level 1U PC Server (with dual-socket Intel Xeon 56xx) manufactured in 2011, a single node

can permit tens of millions of concurrent connections. Compared with IIS+asp.net / Apache+php /

Nginx+php and Java / Python / RoR schemes, the Web framework based on C/C++ has a number of

BaiY Application Platform

 Technical White Paper

27

advantages over them in terms of performance.

Even if we put aside .NET / Java / PHP / RoR / Python which are the relatively less efficient

Application Logic part, the Web framework still is directly comparable to the leading Web servers like

Nginx, Lighttpd, Charokee, and IIS. Web servers like Apache that uses the low-efficiency “one

connection per thread” model are completely surpassed. The best method to evaluate performance is

to do real tests. As a reference, the following table compares the Requests Per Second (RPS) among the

Web framework, IIS and Nginx running on different platforms:

Web Servers Platforms Requests Per Second

(RPS)

IIS Windows 2k3 / ThinkPad T61 Core 2 Duo Mobile @2.0GHz 33500

libutilitis Windows 2k3 / ThinkPad T61 Core 2 Duo Mobile @2.0GHz 33200

Apache Windows 2k3 / ThinkPad T61 Core 2 Duo Mobile @2.0GHz 5650

IIS/ASP.NET Windows 2k3 / ThinkPad T61 Core 2 Duo Mobile @2.0GHz 5270

Nginx Ubuntu 8.04LTS / VMWare Single Core Guest @ ThinkPad T61 17000

libutilitis Ubuntu 8.04LTS / VMWare Single Core Guest @ ThinkPad T61 18900

Nginx/PHP Ubuntu 8.04LTS / VMWare Single Core Guest @ ThinkPad T61 160

Table 1. RPS comparison between Web frameworks

The test of Requests per Second is mainly focused on inspecting the expense the low-level

application framework spend on each request. So we return only a simple “Hello World” page for the

purpose of minimizing the interference caused by content generation and transmission. All the tests on

Windows platform are completed on a single IBM ThinkPad T61 notebook manufactured in 2007

(Windows 2003 SP2, Intel Core 2 Duo Mobile Dual-Core Processor, 4GB DDR2 800 Dual-Channel

Memory). And all the tests on the Linux platform are completed in a VMWare virtual machine under

above mentioned host (the guest environment has single CPU and 768MB memory, with Ubuntu

8.04LTS installed). Configurations for Nginx have been optimized to the greatest degree possible.

Otherwise, the test result is only 12400 RPS under the default configuration with gzip compression

disabled.

All the results shown in the table above are the average result for continuous 10 tests. As shown in

the table, libutilitis Web framework makes its rivals such as ASP.NET / PHP lag far behind, and is equally

matched with the leading Web servers such as IIS and Nginx. The reason is, libutilitis uses the High

Performance I/O Model supported by underlayer operating system and hardware. For example,

libutilitis uses overlapped I/O+IOCP architecture on Windows platform (the same as IIS), and uses

non-blocking I/O + epoll architecture on Linux platform (the same as Nginx).

Additionally, all the tests were executed under the pressure of 100 concurrent connections and

100,000 continuous requests. 100 concurrent connections will not expose the drawback (efficiency will

decrease drastically as the number of concurrent connections increases) of architectures based on

Apache/PHP/ASP.NET and the like, and also can maximize the efficiency of the resources such as CPU,

BaiY Application Platform

 Technical White Paper

28

network adapter and memory.

Admittedly, the above tests can only reflect a single aspect of Web applications. In terms of a Web

framework running on the specified platform, its performance is usually observed from the following

three aspects:

 Maximum Concurrent Connections: the maximum number of concurrent HTTP connections

that the Web framework can support on the given platform.

 Maximum Request per Second: the maximum number of requests that the Web framework

can support per second on the given platform.

 Dynamic Content Generation Performance: measurement of algorithm performance for

generating contents like graphics, reports, and pages in real time on the given platform.

Important: before starting with a test, make the test environment as clean as possible so the test

result will not be affected by the other factors. For example, the Request per Second test that we

mentioned earlier was executed under the condition with a tiny “Hello World” page and a moderate

number of concurrent connections, in order to eliminate, to the greatest degree possible, the

interference caused by other factors.

It is important to keep the testing environment as clean as possible, which is the basis of all

modern science. For example, the preset conditions (zero resistance, absolute horizontal, 1 standard

atmospheric pressure and zero centigrade) in physics, chemistry and other disciplines; and the

prerequisites for testing the acceleration (0-100km) performance of a car: wind velocity (statical

stability), road conditions (flat, no rain and snow), slope (horizontal). A clean testing environment is

good for discovering rules and characteristics of things, and also facilitates performance comparison

between different products.

Maximum Concurrent Connections is a hard indicator for the Web framework. It is closely related

to reliability, robustness, and survivability under environments like high-load, DDoS attack, and slow

connection attack. On the above mentioned T61 platform, libutilitis Web framework can support

high-load situation with over 200,000 concurrent connections, which is completely unachievabl e for

the other Web frameworks like PHP/Java/ASP.NET. With regard to the topic about Request per Second,

the previous sections have provided detailed discussion and comparison.

Dynamic Content Generation Performance is all about performance comparison between

programming languages and databases. There is no need to talk more about the performance

advantages of C/C++ over other popular languages used for Web applications development, such as

PHP, Java, C#, Ruby, Perl, and Python. Also, a lot of trustable benchmark comparisons can be found on

the Internet. The performance comparison among database and memory cache products is out of the

scope of this paper, because it has little relevance with how to choose a Web framework.

BaiY Application Platform

 Technical White Paper

29

We fully understand that performance related topics are always controversial and it is hard to

make a choice purely based on theory. Practice is the sole criterion for testing truth. This is especially

true in relation to performance measurement. Thus we welcome any invitation for A/B testi ng and

performance evaluation.

Not long ago, as the continuous performance improvement for hardware, efficiency of programs

has become a topic that need to be considered only for operating system and a few software like

database and large-scale applications. Nowadays, this topic is back to the spotlight due to

environmental deterioration, increasing energy cost, and cloud computing and virtualization (separate

a single physical server into several VPS) going mainstream. We are dedicated to help customers

continuously improve product quality, application efficiency as well as Performance per Watt, for the

purpose of reducing energy consumption and carbon emission and better adapting customers to cloud

and virtualization environments.

Keep-Alive and HTTP Pipelining Mode

For high-concurrency applications, the Keep-Alive mode can spare the operations that are

repeated between requests, such as TCP connection establishment (3-way handshake), connection

termination (4-way handshake), flow control and initialization. At the same time, it has dramatically

saved system resource (TIME-WAIT pool). Thus it also plays a critical role in high-performance network

applications. FastCGI enables the Keep-Alive mode using the FCGI_KEEP_CONN flag contained in the

Begin Request message. HTTP turns the Keep-Alive mode on and off using the standard “Connection:”

header. The libutilitis library provides Keep-Alive support for both HTTP (1.1 or 1.0) and FastCGI.

Under environments with Keep-Alive enabled, libutilitis can also support HTTP Pipelining that

conforms to HTTP 1.1. In the HTTP Pipelining mode, clients can continuously send multiple requests

without waiting for the responses returned from the server.

BaiY Application Platform

 Technical White Paper

30

Figure 8

As shown in Figure 8, HTTP Pipelining technique has avoided the “stop-wait” protocol by

continuously sending multiple requests. This has dramatically reduced delay in communication and

processing and has enhanced network utilization and throughput. Thus the overall user experience has

been considerably improved.

3.3.2 Typical Web Use Cases

The following figure shows a typical example of high-load Web applications.

BaiY Application Platform

 Technical White Paper

31

Figure 9

Figure 9 shows a typical high-performance Web application with three-layer architecture. This is a

proven architecture that has been widely deployed in many large-scale Web applications including

Google, Yahoo, Facebook, Twitter, and Wikipedia.

BaiY Application Platform

 Technical White Paper

32

Reverse Proxy

The reverse proxy server, which is in the outside layer of the architecture, accepts connection

requests from users. In real use cases, the proxy server will also need to complete at least some the

tasks listed below:

Connection management: maintains the connection pools on the client side and application

server side, manages Keep-Alive connections, and terminates them after time out.

Attack detection and isolation: all requests associated with business logic will be sent to and

processed by the back-end application server, because the reverse proxy service does not

handle any dynamic content generation tasks. Thus, the reverse proxy service will almost not

be affected by program or back-end service vulnerabilities. The reliability and security of

reverse proxy service only depends on the product itself. Deploying a reverse proxy server at

the front-end of the application server can effectively set up a reliable isolation and attack

detection mechanism between the back-end applications and remote users.

When higher security is needed, users can add additional network isolation device like

hardware firewall at boundary positions of external network, reverse proxy, back-end

applications and database.

Load balance: use Round Robin or the "Least Connections First" service policy to achieve load

balance based on user requests, or utilize SSI technology to divide a user request into several

parallel parts and submit them to several application servers separately.

Distributed cache acceleration: Deploy reverse proxy servers in groups at network boundaries

that are geographically close to hot areas, and accelerate network applications by providing

cache service at locations close to clients. This has established a CDN network.

Static file server: when a static file request is received, the server directly returns the file without

submitting the request to the back-end application server.

Dynamic response cache: caches the dynamically generated responses that will not change for a

period, to prevent the background server from frequently executing repeated query and

calculation.

Data compression: enables GZIP/ZLIB compression algorithms for returned data in order to save

bandwidth.

Data encryption (SSL Offloading): enables SSL/TLS encryption for communications with clients.

Fault detection and Fault tolerance: tracks the health status of back-end application servers, to

avoid sending requests to a faulty server.

BaiY Application Platform

 Technical White Paper

33

User authentication: completes tasks including user login and session establishment.

URL alias: establishes a uniform URL alias in order to hide the real location.

Applications mixture: mixes different Web applications together using SSI and URL mapping

technology.

Protocol conversion: provides protocol conversion service for back-end applications that use

protocols like SCGI and FastCGI.

The popular reverse proxy services include Apache httpd+mod_proxy, IIS+ARR, Squid, Apache

Traffic Server, Nginx, Cherokee, Lighttpd, HAProxy, Varnish, and etc.

Application Service

The application service layer is located between the back-end service layer (e.g., database) and

the reverse proxy layer. It receives connection requests forwarded by the reverse proxy, and

downwards accesses structured storage and data query services provided by the database.

This layer has implemented all business logic associated with Web applications, and usually needs

to complete a lot of calculation and dynamic data generation tasks. The nodes within the application

layer may not be fully equivalent, and may be separated into different service clusters with SOA or

nano-SOA architecture. Working in combination with the asynchronous Web framework provided by

libutilitis, it is realistic to use C/C++ to implement Web applications that leave its rivals far behind in

terms of functionality and effectiveness.

BaiY Application Platform

 Technical White Paper

34

Figure 10

Figure 10 shows a typical working model with high concurrency and high performance. Each Web

application node (represented by boxes labelled as “App” in Figure 9) usually works on its own server

(physical server or VPS), and several nodes can work in parallel in order to easily achieve horizontal

scaling (scale-out).

In the above example, a Web application node comprises three key parts: I/O callback threads

pool, Web requests queue, and back-end worker threads pool. The workflow is as follows:

1. When a Web request arrives, the operating system informs AIO callback thread to process this

arrived Web request, through the I/O completion (or I/O ready) callback mechanisms which

are closed related to the platform such as IOCP, epoll, kqueue, event ports, real time signal

BaiY Application Platform

 Technical White Paper

35

(posix aio), /dev/poll, and pollset.

2. When a worker thread in the AIO callback pool receives an arrived Web request, it attempts

to pre-process the request. During pre-processing, local high-speed cache will be used to

avoid data query which requires relatively higher cost. If local cache is matched, it will directly

return the result (still using asynchronous method) to the client and will complete this

request.

3. If the queried data is not matched in local cache, or the Web request needs writing to the

database, the AIO callback thread will put this request into the specified queue. The request

will wait for an idle thread in the worker threads pool to further process it.

4. Each thread in the back-end worker threads pool maintains two Keep-Alive connections: one

is connected to the bottom layer database service, and the other is connected to the

distributed caching (memcached) system. The worker threads pool has implemented a

connection pool mechanism for both the database and distributed cache, through the

method that each worker thread maintains its own Keep-Alive connections. Keep-Alive

connection has substantially improved application processing efficiency and network

utilization by repeated use of a single network connection for different requests.

5. Back-end worker threads wait for new requests to arrive in the Web requests queue. Once

getting a new request from the queue, the thread will first attempt to match the data being

queried by the request with distributed cache, if there is no match or this request needs

further processing such as database writing, this Web will be directly completed through

database operations.

6. After a Web request is fully processed, the worker thread will return the result as a Web

response to the specified client using asynchronous I/O method.

The above procedures are intended to give you a general understanding about how a typical Web

application node works. It is worth noting that different Web applications may have very different

working model and architecture because of different design concept and functions.

Note that the edge-triggered AIO event notification mechanisms like Windows IOCP and POSIX

AIO Realtime Signal are different with level-triggered notification mechanisms like epoll, kqueue and

event ports. In order to prevent the I/O completed events queue from being too long or overflow,

causing the memory buffer being locked in the nonpaged pool for a long time, the above mentioned

AIO callback mechanism is composed of two separate thread pools and one AIO completed events

queue. One thread pool is responsible for continuously listening for events arrived at the AIO

completed events queue, and then submit the events to an internal AIO completed events queue (this

queue works under user mode and will never lock memory; the queue length is user-customizable.);

and simultaneously, the other thread pool is waiting on this internal AIO queue, and processes AIO

BaiY Application Platform

 Technical White Paper

36

completed events that arrives at the queue. This type of design can reduce workload for the operating

system, and can avoid message loss, memory leak and memory exhaustion that may occur in extreme

situations. Also, it can help the operating system to better manage and utilize its nonpaged pool.

As a typical use case, most of Google Web applications like search engine and Gmail are

implemented using C/C++. Thanks to the high efficiency and powerfulness of C/C++ languages, Google

provides global Internet users with the best Web experience, and also has achieved completing a Web

search among its millions of distributed servers around the world at total consumption of 0.0003 kW·h

only. For further discussion on Google Web application architecture and hardware scaling, refer to

http://en.wikipedia.org/wiki/Google and http://en.wikipedia.org/wiki/Google_search.

Database and memcached Services

Database service offers relational or structured data storage and query service for upper layer

Web applications. Depending on specific use case, Web applications can provide access to different

database services using plugin mechanisms like database connector. Under this architecture, users can

flexibly choose or change to a database product which is most suitable for their needs. For example,

users can use embedded engine like SQLite for quick deployment and functions verification at POC

stage, and can switch to MySQL database solution which is cheaper at the preliminary stage. And when

business needs increase and database workload becomes heavy, users can migrate to a more expensive

and complex solution such as Clustrix, MongoDB, Cassandra, MySQL Cluster and Oracle.

Memcached is a distributed data objects caching service fully based on memory and <Key, Value>

pair. It offers unbelievable performance and has a large distributed architecture which eliminates the

need for inter-server communication. For high-load Web applications, memcached is an important

service often used to speed up database access. It is not a mandatory component, so users can wait to

deploy it till the time when performance bottleneck shows up in their database service. It is worth

noting that though memcached is not a mandatory component, its deployments in large-scale Web

applications (e.g., YouTube, Wikipedia, Amazon.com, SourceForge, Facebook, and Twitter) has proved

that memcached not only can keep performing stably under high-load environments, but also can

dramatically improve the overall performance of data query. For further discussion on memcached,

refer to http://en.wikipedia.org/wiki/Memcached.

However, we should note that distributed caching systems like memcached are intrinsically a

compromise solution that improves the average access performance at the cost of consistency. Caching

service adds distributed replicas of some records in database. For multiple distributed replicas of the

same piece of data, it is impossible to guarantee the strong consistency unless we employ consensus

algorithms like Paxos and Raft.

Contradictorily, memory cache itself is meant to improve performance. Thus it is unrealistic to

employ the above mentioned expensive consensus algorithms. These algorithms require each access

http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Google_search
http://en.wikipedia.org/wiki/Memcached

BaiY Application Platform

 Technical White Paper

37

request to simultaneously access the majority replica including master and slave nodes in the

background database. Obviously, this will make performance even lower than not using caching

service.

Furthermore, the consensus algorithms like Paxos and Raft can only guarantee strong consistency

at single record level. That means there is no guarantee for transaction-level consistency.

Distributed caching will add complexity to the program design and will increase access delay in

unfavoured circumstances such as RTT delay upon unmatched, delay upon node offline or network

communication issues.

Since 20 years ago, the mainstream database products have implemented proven multi-layer (e.g.,

disk block, data page and query result set) caching mechanism with high match rate. Now that

distributed caching mechanisms have so many drawbacks while database products have excellent

built-in caching mechanisms, why the former have become an important foundation for modern

high-load Web App?

The intrinsic reason is, in the technology environment ten years ago, the RDBMS (SQL) system

with poor scale-out capability had become the bottleneck for network applications like Web App to

expand. Thus, NoSQL database products represented by Google BigTable, Facebook Cassandra,

MongoDB and SequoiaDB, and distributed caching systems represented by memcached and redis

emerged in succession, all playing an important role.

Compared with “traditional” SQL database products like MySQL, ORACLE, DB2, MS SQL Sever, and

PostgreSQL, both NoSQL database and distributed caching systems has sacrificed strong consistency to

get higher scale-out capability.

This kind of sacrifice was a painful choice under the technology conditions at that time. Systems

have become complex: traditional RDBMS is used for places where ACID transaction and strong

consistency are required and data volume is small; distributed caching systems are preferred for places

where there is “more read and less write” but there is still some room for compromising consistency;

NoSQL is used for big data with even lower requirement for consistency; if the data volume is large and

there is strict requirement for consistency, sharding of RDBMS could be a solution, which requires

various middleware to be developed for implementing complex operations such as request distribution

and result set merging for the underlayer databases. There are many different cases which are mingled

together making the systems even more complex.

In retrospect, that is an age when old rules were broken but new rules were still not established

yet. The old RDBMS is poor in scale-out capability so it cannot satisfy the emerging requirements for

big data processing. However, there was not a structured data management solution that can replace

the old systems and can satisfy most of user requirements.

BaiY Application Platform

 Technical White Paper

38

That is an age when requirements were not satisfied. Products like BigTable, Cassandra, and

memcached are self-rescue results made by Google, Facebook and LiveJournal respectively. There is no

doubt these products aimed at “satisfying business requirements at the lowest cost” are poor with

generality.

In 2015, finally we are moving out of the predicament. As many of NewSQL solutions (e.g., Google

F1, MySQL Cluster (NDB), Clustrix, VoltDB, MemSQL, NuoDB and MyCat) are getting mature and the

technology is improving, horizontal scaling capability is no longer a bottleneck for RDBMS. Nowadays

architectures can guarantee enough horizontal scaling capability for the system, and simultaneously

can achieve strong consistency for distributed transactions (XA).

BaiY Application Platform

 Technical White Paper

39

Figure 11

As shown in the above figure, there is no longer a keen need for distributed caching systems or

NoSQL products after NewSQL is equipped with good scale-out capabilities. This has made design and

development of the architecture back to simplicity and clarity. Object Storage service offers the

support for storing and accessing unstructured BLOB data like audios, videos, graphics and files.

This kind of simple, clear and plain architecture makes everything seemly reverted back to years

BaiY Application Platform

 Technical White Paper

40

ago. Object Storage service looks like disk file systems such as FAT, NTFS and Ext3, and NewSQL service

looks like the old single-machine database such as MySQL and SQL Server. However, everything is

different. Business logic, database and file storage have evolved to be high-performance and

high-availability clusters that support scale-out capabilities. Performance, capacity, reliability and

flexibility have grown with leaps and bounds. Human beings have always evolved in a spiralling course.

Every change that looks like a return represents intrinsic development.

As the distributed file systems (e.g., GlusterFS, Ceph and Lustre) that are mountable and support

Native File API are becoming more mature and complete, it is expected to replace existing object

storage services for most use cases in a phased manner. This is a major milestone in the evolution of

the Web App architecture, of which a real revolution will come when we can implement a

high-efficiency and high-availability general Single System Image system. Once such system happens,

writing a distributed application will be nothing different from writing a standalone multi-thread

application nowadays. It will be nature that processes are distributed and highly available.

Scalability of the Three-tier architecture

The three-tier Web application architecture has demonstrated incredible scalability. It can be

scaled down for deployment within a single physical server or VPS, and also can be scaled up for

deployment in Google’s distributed application which comprises millions of physical servers around the

world.

Specifically, during project verification and application deployment and at the early stage of

service operation, users can deploy the three-layer service component into a single physical server or

VPS. Simultaneously, by cancelling the memcached service and by using embedded database products

that consume less resource and are easier to deploy, users can further reduce both the difficulty level

for deployment and the overall system overhead.

As business expands and system workload keeps increasing, the single-server solution and simple

scale-up will no longer be able to satisfy the operation needs. Users can achieve a scale-out solution by

distributing components to run on several servers.

For example, a reverse proxy can achieve distributed load balancing by using DNS CNAME records

or some layer-3/layer-4 relay mechanisms (such as LVS and HAProxy). It can also use Round Robin or the

"Least Load First" strategy to make distributed load balancing for application services. Additionally, a

server cluster solution based on shared virtual IP can also implement load balancing and the fault

tolerance mechanism.

Similarly, both memcached and database products have their own distributed computing, load

balancing and fault tolerance mechanisms. Furthermore, the performance bottleneck of database

access can be resolved by changing to NoSQL/NewSQL database product or by using methods such as

BaiY Application Platform

 Technical White Paper

41

master-slave replication. Query performance of the traditional SQL database can be dramatically

improved by deploying memcached or similar services.

3.3.3 FastCGI? SCGI? HTTP!

Though libutilitis supports three types of protocols, it is recommended to use HTTP as the

preferred protocol for building Web applications. The first reason is, there is no need for protocol

conversion, and HTTP can perfectly support Keep-Alive so it can offer the highest efficiency. The second

reason is, as the most commonly used protocol today, HTTP is supported by the widest array of

products and offers the most stable implementations.

In case it is impossible to use HTTP for certain reasons (e.g., there is a need for deploying reverse

proxy service on the basis of IIS 6.0 or earlier), SCGI usually comes to be the second choice. Compared

with FastCGI, the biggest advantage of the SCGI protocol is simplicity. A simpler protocol makes

implementation easier and is less prone to defects. As a complex and message-based network protocol

which supports multiplexing and Keep-Alive, FastCGI has not been correctly implemented on many

Web servers. For example, all the remote FastCGI plugins on the current version of IIS (version 7.5) and

Apache (version 2.2) have defects to some degree.

Furthermore, avoiding the redundant message packaging mechanism in FastCGI makes it even

easier to implement SCGI efficiently. Compared to SCGI, the sole advantage of FastCGI is the support

for Keep-Alive connection. Unfortunately, among all the mainstream Web servers that support FastCGI

(such as IIS, Apache, Nginx, Lighttpd, Zeus and Cherokee), only Apache plans to include support for

Keep-Alive connection in the mod_proxy_fcgi module of its upcoming release 2.3. Though the other

servers have provided efficient and accurate FastCGI extensions without support for Keep-Alive

connection, there is no advantage over SCGI. Because the FastCGI protocol is complex and the support

of it varies from different servers, SCGI should be treated as the second choice for developing Web

applications.

BaiY Application Platform

 Technical White Paper

42

4. Cross-platform Cryptographic Library - libcrypto

The cryptographic library encapsulates all the algorithms and facilities that are provided by the

application platform and are associated with cryptography. Because this library is implemented based

on libutilitis, it can avoid almost all platform related operations other than the algorithm optimization

part.

Figure 12

As shown in Figure 12, the libcrypto library is implemented using two-layer structure. The

following sections provide more details about these layers.

4.1 The Cryptographic Algorithm Module - algorithm

This module encapsulates all fundamental algorithms. Because almost all the popular algorithms

can be obtained from the Internet for free, we just need to categorize them and encapsulate them

altogether. This has dramatically simplified our implementation and debug efforts.

BaiY Application Platform

 Technical White Paper

43

The currently supported algorithms are described in the following sections.

4.1.1 Block Cipher Algorithms

Algorithms Key length

AES 128bit, 192bit, 256bit

BlowFish 32bit, 64bit, 96bit, 128bit, 192bit, 256bit, 384bit, 448bit

IDEA 128bit

MARS 128bit, 192bit, 256bit, 384bit, 448bit

DES 56bit

DES-EDE2 128bit

DES-EDE3 192bit

CAST5 40bit, 64bit, 96bit, 128bit

CAST6 128bit, 160bit, 192bit, 224bit, 256bit

SAFER-K 64bit, 128bit

SAFER-SK 64bit, 128bit (an enhanced version of SAFER-K, has corrected a vulnerable within

the key schedule)

TwoFish 32bit, 64bit, 96bit, 128bit, 192bit, 256bit

Serpent 32bit, 64bit, 96bit, 128bit, 192bit, 256bit

ARIA 128bit, 192bit, 256bit

Kalyna 128bit, 256bit, 512bit

Simon 64bit, 128bit, 192bit, 256bit

Speck 96bit, 128bit, 192bit, 256bit

SM4 128bit

ThreeFish 256bit, 512bit, 1024bit

CHAM 128bit, 256bit

HIGHT 128bit

LEA 128bit, 192bit, 256bit

SIMECK 64bit, 128bit

All the above algorithms support the following encryption modes:

Abbreviations:

IN – input vector

OUT – output vector (not for use in plaintext encryption)

ENC – encryption algorithm

K – encryption key

P – plaintext

C – ciphertext

XOR - exclusive or

<< - shift left

BaiY Application Platform

 Technical White Paper

44

BSIZE – cipher block size

COUNT - counter

 Counter (CTR) Mode: IN(N) = ENC(K, COUNT++), C(N) = IN(N) XOR P(N); CTR mode is widely

used in ATM network and IPSec applications. It is distinguished from the other modes by the

following characteristics:

 Hardware efficiency: allows multiple blocks of plaintext/ciphertext to be processed

simultaneously.

 Software efficiency: allows parallel computing which can make good use of parallel

technologies like CPU pipeline.

 Pre-processing: the output of the encryption box is independent of the input of plaintext

or cipher text. If there are sufficient storage devices, the algorithm is just about a series

of XOR operations, which will greatly increase the throughput.

 Random access: decryption of block “i" ciphertext is independent of the ciphertext block

i-1, providing high capability of random access. When encrypting a large block of data

but random access to the data is required (e.g., virtual file system), random access

capability can effectively increase encryption strength. This can save us from the need to

reinitialize the algorithm to start a new round of encryption for each data block. In an

operation mode without support for random access, the algorithm can only operate in a

mode similar to electronic codebook (ECB). This is because the algorithm needs to be

reset before every data block is going to be encrypted.

 Provable security: can prove that CTR is at least as secure as other modes like CBC, CFB,

and OFB.

 Simplicity: different with other modes, CTR requires implementation of the encryption

algorithm only (It does not require the decryption algorithm). This is a huge

simplification for algorithms like AES.

 No fill: can replace stream cipher.

 Cipher Block Chaining (CBC) Mode: IN(N) = P(N) XOR C(N-1), C(N) = ENC(K, IN(N)); this block

cipher mode was widely employed before CTR appears. It was designed for grouped (iterated)

encryption and authentication.

 Cipher Feedback (CFB) Mode: IN(N) = C(N-1) << (BSIZE-j), C(N) = ENC(K, IN(N)) <<(BSIZE-j)

XOR P(N), in which j represents the number of bits for each encryption. CFB is similar to CBC,

but it processes only the j bits of data at once, and discards the remaining BLOCKSIZE – j bits.

From this point, CFB mode can change block cipher to stream cipher without compromising

security. Nevertheless, the CFB mode is considered to be wasteful, because most of the

results in each round are discarded (usually j is one byte, 8 bits. But typically the size of each

cipher block could be 64, 128 or 256 bits).

 Output Feedback (OFB) Mode: IN(N) = OUT(N-1) << (BSIZE-j), C(N) = ENC(K, IN(N)) <<(BSIZE-j)

BaiY Application Platform

 Technical White Paper

45

XOR P(N), OUT(N) = ENC(K, IN(N)) << (BSIZE-j). This mode is very close to CFB. The only

difference is that output (not XORed with plaintext) from the previous iteration is used as the

input of the current round. Similar to CFB mode, OFB mode can also be used as a stream

cipher mode. In addition, input of each iteration not being the ciphertext from the previous

iteration brings good fault tolerance. That means error propagation of a ciphertext block (one

byte) will not affect subsequent ciphertext blocks. Usually this mode needs to work with

message authentication and digital signature algorithms together, because not adding

ciphertext to the input will result in poor anti-tamper capability. OFB mode is often used in

communications with high noise level as well as in common stream cipher scenarios.

 Electronic Codebook (ECB) Mode: IN(N) = P(N), C(N) = ENC(K, IN(N)). It is the simplest and

also the most insecure encryption mode. It always uses the same key to directly encrypt the

input of each iteration. For identical plaintext blocks, it will always generate identical

corresponding ciphertext blocks. This will result in poor performance with repetition statistics

and structural analysis resistant. ECB mode is the worst scenario (i.e., every input plaintext

block is less than BSIZE) of one-time encryption. ECB mode should be considered only for

one-time pad or when a very small amount of data is being propagated.

4.1.2 Stream Cipher Algorithms

Algorithms Key length

SEAL 160bit (the fastest symmetric algorithm until now, is 8 times faster than AES128.

Though the source code is freely available, SEAL is the proprietary property of IBM

in the United States.)

MARC4 32bit, 64bit, 96bit, 128bit, 192bit, 256bit, 384bit, 448bit, 512bit, 768bit, 1024bit,

1536bit, 2048bit (enhanced version of RSA RC4, has removed the insecure 256-byte

header in ARC4)

Panama 256bit

Salsa20 128bit, 256bit

XSalsa20 128bit, 256bit (increased the unpredictability in Salsa20)

Sosemanuk 128bit, 192bit, 256bit

ChaCha8 128bit, 256bit

ChaCha12 128bit, 256bit

ChaCha20 128bit, 256bit

Rabbit 128bit

HC-128 128bit, 256bit

All of the above block cipher and stream cipher algorithms are implemented by the synchronous

algorithm object within libcrypto.

BaiY Application Platform

 Technical White Paper

46

4.1.3 Public Key Algorithms

Currently libcrypto supports RSA algorithm with a key length of 512, 768, 1024, 2048, 4096, 8192,

or 16384 bits. Also, it fully supports public key encryption and signature.

4.1.4 Hash Algorithms

Algorithms Hash length

CRC32 32bit 4Bytes

CRC32-C 32bit 4Bytes

ADLER32 32bit 4Bytes

MD5 128bit 16Bytes

MD2 128bit 16Bytes

SHA1 160bit 20Bytes

SHA224 224bit 28Bytes

SHA256 256bit 32Bytes

SHA384 384bit 48Bytes

SHA512 512bit 64Bytes

Panama 256bit 32Bytes

Whirlpool 512bit 64Bytes

TIGER 192bit 24Bytes

RIPEMD128 128bit 16Bytes

RIPEMD256 256bit 32Bytes

RIPEMD160 160bit 20Bytes

RIPEMD320 320bit 40Bytes

SHA3-224 224bit 28Bytes

SHA3-256 256bit 32Bytes

SHA3-384 384bit 48Bytes

SHA3-512 512bit 64Bytes

BLAKE2-256 256bit 32Bytes

BLAKE2-512 512bit 64Bytes

SM3 256bit 32Bytes

SHAKE128 (256) 256bit 32Bytes

SHAKE256 (512) 512bit 64Bytes

LSH224 224bit 28Bytes

LSH256 256bit 32Bytes

LSH384 384bit 48Bytes

LSH512 512bit 64Bytes

BaiY Application Platform

 Technical White Paper

47

4.1.5 Message Authentication Algorithms

The algorithm module supports HMAC algorithms that correspond to all the above listed hash

algorithms except for CRC32, ADLER32 and SHA-3.

In addition, non-HMAC family message authentication algorithms such as SipHash64, SipHash128,

and Poly1305<AES> are also supported.

It should be noted that new hash algorithms such as SHA-3, Blake2, and SHAKE are not affected by

length-extension attacks, so there is no need to use complex HMAC transforms.

4.1.6 Data Compression Algorithms

The algorithm module currently supports GZIP (RFC 1952), ZLIB (RFC 1950), BZ2, LZO, LZ4 (for

real-time data compression), and etc. All these algorithms support iterated and one-time compression.

ZIP and BZIP have been well known for a long time, so I will not describe them in this document.

LZO is famous for high-efficiency and lossless compression. Owing to its stable and exceptional

performance, it is widely used in various areas including NASA's Mars rovers Spirit and Opportunity, the

famous executable file compression utility UPX, and etc. LZO has surprising efficiency. It needs only 64

KB space for compression, and needs no extra space for decompression. On a Intel Pentium 133 with

only 60MB/sec memory (memcpy) bandwidth, LZO can achieve 20MB/sec and 5MB/sec for

decompression and compression respectively. With similar compression ratio, LZO can be several times

faster than other famous algorithms like ZIP and RAR.

LZ4 is a newly emerged real-time compression algorithm. Compared with the famous LZO, LZ4 can

provide higher efficiency: 1 - 4 times faster than LZO, under the condition of similar compression ratio.

4.1.7 Data Encode/Decode Algorithms

The libcrypto library currently supports the most popular data encode/decode algorithms such as

HEX, BASE64 and BASE64-URL.

4.1.8 Random Number Generator Algorithm

As per the current environment, libcrypto can obtain a good random seed through interfaces like

BaiY Application Platform

 Technical White Paper

48

CryptoAPI and /dev/random, and can work with secure hash algorithms and synchronous algorithms to

generate a high quality random sequence with specified length.

4.2 The Common Facilities Module - facility

The common facilities module is built upon the cryptographic algorithm module. As a standard

component within the application platform, it offers software designers with a universal and delicate

tool set associated with cryptography. This module contains the followings:

 Certificate: uses public-key signature and hash algorithms to implement digital certificate and

a Certificate Revocation list (CRL) that can satisfy PKI requirements.

 Encryption algorithms similar to PGP: uses public-key cryptography, Digital Signature

Algorithm (DSA) and synchronous algorithms to implement a data encryption and signature

mechanism that is similar to PGP.

 Secure message transmission layer: uses public-key algorithms, synchronous algorithms,

message authentication algorithms, and data compression algorithms to implement a

message-oriented secure and transparent transmission layer.

 VFS supporting compression and encryption options on-the-fly: uses hash algorithms, data

compression algorithms, and synchronous algorithms to implement a file-based VFS tool,

which is compatible with the VFS framework within libutilitis and supports real-time access.

Iterative transformation protect of the encryption key is also supported. If the encryption

option is enabled, the same encryption strength could be applied to directory list information

and the meta data of each file and each directory.

 License agreement: uses compression, digital signature and obfuscation algorithms to

provide uses with a generic tool used for license agreement authentication and protection.

BaiY Application Platform

 Technical White Paper

49

5. Data Processing Tools

Includes data processing related components like report generator, embedded database engine,

database access interface and etc.

5.1 Report Generation Library - libreport

The report generation library is implemented on the basis of libutilitis. It can generate reports in

specified format using customized templates and specified dataset. The library has the following

functions:

 Generate reports in formats such as Excel 2.0 (BIFF), Excel XP (ExcelML), Excel 2007 (xlsx), and

HTML.

 Is independent of third-party components like Microsoft Excel, thus will never bring License

issues.

 Supports all kinds of charts (except for Excel 2.0 and Excel XP) including line chart, bar chart,

pie chart, and Gantt chart.

 Supports customizable variables and constants, formulas, as well as all field types such as date,

time, numbers and text.

 Supports I18N and customizable themes including font, graphics, texts, and color.

 High performance and low consumption: load data and generate the report iteratively (one

by one), one pass scan.

The libreport library offers cross-platform report generation tools with a rich set of functions. Its

independence of any third-party component not only eliminates license issues, but also maintains

convenience for deployment and usage, high efficiency as well as cross-platform capability. Its

functionality, performance and stability have been proved after many years of usage in production

environments of large enterprises.

5.2 ODBC Encapsulation Library - libodbc_cpp

The ODBC encapsulation library is implemented on the basis of libutilitis. As part of the ISO

standard, the universal ODBC interface is widely supported by major platforms and almost all

SQL/NewSQL database products. It is implemented as Native Client API in many database products like

MS SQL Server, DB2, MySQL, Firebird, PostgreSQL, MySQL Cluster, Clutrix, OceanBase, InfiniDB,

BaiY Application Platform

 Technical White Paper

50

MemSQL, Greenplum, and Teradata.

Note: Both psqlODBC and libpq are Native Client Library for PostgreSQL, and there is no

dependence between them. However, psqlODBC will use libpq to complement some public operations

that are not performance critical under the default compilation options.

The ODBC encapsulation library has implemented the following functions:

 ODBC interfaces are grouped and encapsulated with the concept of Connection, Statement

and Result set.

 Supports prepared statement and dynamic parameter binding. Zero-copy binding is

supported for all types of parameters.

 Supports zero-copy pre-binding or post-binding for result set fields.

 Thanks for the high efficiency BLOB and string type with reference counting and copy on write

mechanisms which is provided by libutilitis, all zero-copy data binding operations are

transparent to the user. Users do not need to pay any extra effort for it.

 Uses BLOB type and strings with reference counting and zero-copy, thus all zero-copy and

binding operations are transparent to users, which spares users any additional efforts.

 Supports ODBC connection pool.

 Can easily configure commonly used parameters at connection and statement level. These

parameters include time-out values, maximum result set size, maximum field size, and other

common properties. It also can send and retrieve customized or advanced options with DM

and Driver directly.

 Supports administrative operations like table/index existence checking, acquisition of

table/database information, and termination of current operation.

 Compatible with Microsoft 32-bit/64-bit ODBC library, unixODBC, iODBC, and common ODBC

or SQL/CLI applications like DB2 CLI.

ODBC not only is widely supported by major platforms and products, but also is the most effective

universal database interface. Zero-copy capability of ODBC can avoid high consumptions of memory

copy and format conversion, which are resulted from interfaces like OLEDB, ADO, JDBC, and ADO.NET.

All the above mentioned database products use ODBC interface to implement their Native Client

Library, which reflects that this interface is of superior efficiency.

In addition, ODBC is also appropriate for preventing CopyLeft restrictions with Client Library of

database products like MySQL, without compromising efficiency.

BaiY Application Platform

 Technical White Paper

51

5.3 SQLite Encapsulation Library - libsqlite_cpp

SQLite (http://sqlite.org) is a very famous embedded database engine. It has been 10 years since

its first publication. There is no doubt with its stability and functionality, because it has been widely

employed into the key products of famed companies like Microsoft, Google, GE (General Electric),

Apple, Oracle (Sun), Nokia (Symbian), Mozilla (Firefox), Adobe, Toshiba, and McAfee. The key

characteristics of SQLite are as follows:

 Free and open source under a very loose agreement.

 Supports various operating systems and hardware platforms.

 Provides stable support for large database with Terabytes of data and hundreds of millions of

records.

 Offers ACID assurance; supports most of the standard SQL92 functions including primary key,

foreign key, composite index, transactions, view, and trigger; supports standard SQL language.

 Single database file with cross-platform formats.

 Online backup with uninterrupted service.

 The database engine (only 300KB) is fully embedded into the application, with no need for

installing any database service separately (server less). No configuration or management

intervention is required (zero-configuration).

 High efficiency – the embedded engine can avoid consumptions of data transportation and

encoding/decoding, and supports automatic query evaluation and optimization.

Implemented on the basis of libutilitis and libcrypto, the libsqlite_cpp library provides a C++

encapsulation of SQLite. It offers the following functions:

 Grouped and encapsulated SQLite interface with the concepts of DB (Connection), Statement

and Result set.

 Prepared statement, dynamic parameter binding, and zero-copy parameter binding.

 Zero-copy binding for result set fields.

 Convenient configure options such as timeouts, WAL mode, and Shared Cache mode.

 Administrative operations such as table/index existence check, acquisition of table/database

information, terminating ongoing operations.

 SQLite VFS Driver (EncVFS) provides on-the-fly strong encryption for all types of data including

primary database, temporary database, attached database and all log files, to ensure no

information leakage. It can employ all block cipher algorithms and stream cipher algorithms

that are supported by libcrypto (Refer to 4.1.1 Block Cipher Algorithms and 4.1.2 Stream

http://sqlite.org/

BaiY Application Platform

 Technical White Paper

52

Cipher Algorithms). Enabling EncVFS will make libsqlite_cpp depend on libcrypto.

On the premise that efficiency and functionality not being affected, the user interface and

semantics for libsqlite_cpp are as consistent as possible with libodbc_cpp, so users can easily migrate

between both libraries.

5.4 nSOA - libapidbc

The libapidbc library can be divided into three correlated parts. It defines a cross-platform plugin

interfaces (IPlugin) which have the following characteristics:

 Plugins are usually provided in the form of dynamic-link library (DLL), exposing a single

interface like “extern "C" void* CreateInstance(void);”. Plugins can also be embedded into

projects in the form of static library or source codes, without exposing any interface.

 Plugins can carry or accept any complex CConfig information. These information are divided

into several parts, such as general configurations, advanced configurations, and internal

configurations. Each part can be customized according to plugin category or the specific

implementations.

 Each plugin can carry two VFS which contains any type of resources. These VFS are used as an

external virtual volume (usually contains resources like pages, graphics, and language pack) ,

as well as a private virtual volume for internal use (e.g., report templates, data fields mapping

table and etc.).

 Automatic plugins matching is implemented based on current environment factors such as

processor, operating system, and release version (MBCS / UNICODE).

IPlugin defines a complete, self-descriptive, flexible and manageable interface. Based on it,

libapidbc defines DBC (database connector) plugin types. DBC offers the following functions:

 As a middleware, DBC is easier to use than libsqlite_cpp and libodbc_cpp. It can dire ctly use

CConfig that is independent of database products to define table, index and data sharding

rules, without the need for any SQL or NoSQL statement.

 Supports CAS (Compare and Swap) atomic updates that are based on the Revision field. This

algorithm can resolve the competition issue that several nodes update the same record

simultaneously.

 Provides data encryption service transparent to the user, and adds reliable strong encryption

for data transmission and data storage for underlayer database. In situations where

underlayer products or services do not support strong encryption, middleware will be

employed for achieving this purpose transparently.

BaiY Application Platform

 Technical White Paper

53

 Provides data compression service transparent to the user, and adds on-the-fly data

compression support for data transmission and data storage for underlayer database. Users

can set compression options for each table or each collection separately. Transparent data

compression can be enabled simultaneously with other services like data encryption.

 Users can use the generic query object (provided by libutilitis) to describe complex query.

There is no need for users to create any query statement or to consider the compatibility of

underlayer DB products. Create complex query expressions independent of database products

using graphic UI or the query object interface.

 Provides the following capabilities by making use of the query engine component (within

libutilitis) intelligently: UNICODE and ARE regular expression matching, advanced query

functions like associated query with embedded tables, virtual fields and user customizable

query (e.g., users can define BELONGS_TO for department and location). Simultaneously, DBC

utilizes capabilities like index provided by underlayer database to improve performance.

 Portability – libapidbc provides DBC plugins for common database products. Users can easily

expand new plugins that are compliant with DBC interface regulations. Because exposed

interfaces for configuration, query, update, insert and transactions are all independent of

specific products, users can easily switch between database products by simply changing the

DBC plugin. This has greatly reduced the dependence on a specific database product.

 User can configure any number of database server addresses for one DBC instance at the

same time. The DBC plug-in can automate failover (high availability) and load balancing by

these configurations.

API Nexus is another component provided by libapidbc. By registering API Dispatcher in API Nexus,

a functional module can dynamically expose its services to other modules in the form of API. The

dynamic API registration mechanism is a match with hot-plugging capability of the plugin.

To solve the dependence issue with plugins initialization order, API Nexus provides API calling

capability based on asynchronous (message queue) semantics. When an asynchronous call issued, if

the callee module (module called by the caller) is not loaded yet, API Nexus will put the request in a

queue temporarily, and will process these queued requests in the order of being called once this

module is loaded.

In addition, libapidbc also offers ETL mapping tools, customizable advanced query tools, locale

adapter for API requests, and other auxiliary tools, as well as a set of message routing services (5.4.3

Port Switch Service) which integrates service election, service discovery, fault detection, distributed

locking and other distributed coordination functions.

BaiY Application Platform

 Technical White Paper

54

5.4.1 SOA vs. AIO

Since long ago, the high-layer architecture at server end has been categorized into two

contradictory patterns: SOA (Service-oriented architecture) and AIO (All in one). SOA divides a

complete application into several independent services, each of which provides a single function (such

as session management, trade evaluation, user points, and etc.). These services expose their interfaces

and communicate with each other through IPC mechanisms like RPC and WebAPI, altogether

composing a complete application.

Conversely, AIO restricts an application within a separate unit. Different services within SOA

behave as different components and modules. All components usually run within a single address

space (the same process), and the codes of all components are usually maintained under the same

project altogether.

The advantage of AIO is simplified deployment, eliminating the need for deploying multiple

services and implementing high availability clustering for each service. AIO architecture has far higher

efficiency than SOA, because it can avoid huge consumptions caused by IPC communications like

network transmission and memory copy.

On the other hand, components within AIO are highly inter-dependent with poor reusability and

replaceability, making maintenance and extension difficult. It is common that a rookie will spend a lot

of effort and make many mistakes before getting the hang of a huge project which contains a large

number of highly coupled components and modules. Even a veteran is prone to cause seemingly

irrelevant functions being affected after modifying functions of a module, because of complicated

inter-dependence among components.

The SOA architecture features complex deployment and configuration. In real cases, a large

application is usually divided into hundreds of independent services. For example, a famous

e-commerce website (among the top 5 in China) which fully embraces SOA has divided their Web

application into tens of hundreds of services. We can imagine the huge amount of workload required to

deploy hundreds of servers within high availability environment where multiple active data centers

exist, and to configure these servers to establish coordination relationships among them. For example,

the recent network outage with ctrip.com was followed by slow recovery due to its huge SOA

architecture which comprises tens of hundreds of services.

Inefficient is another major disadvantage of SOA. From the logic flow perspective, almost every

complete request from the client needs to flow through multiple services before the final result is

generated and then returned to the client. Flowing through each service (through messaging

middleware) is accompanied by multiple times of network and disk I/O operations. Thus several

requests will cause long network delay accumulatively, resulting in bad user experience and high

consumption of resources.

BaiY Application Platform

 Technical White Paper

55

Figure 13 The Messy SOA Dependencies (Image from the Internet)

The responsibility to implement the support for cross-service distributed transaction will fall on

the application developers, no matter each service is connected to a different DBMS or all services are

connected to the same distributed DBMS system. The effort for implementing distributed transaction

itself is more complex than most of common applications. Things will become more difficult when we

try to add high availability and high reliability assurance to it, to achieve this goal, developers need to:

utilize algorithms like Paxos/Raft or master/slave + arbiter for a single data shard; and employ

algorithms like 2PC/3PC for transactions comprised of multiple data shards to achieve the ACID

guarantee. Therefore, a compromise solution for implementing cross-service transactions within SOA

applications is to guarantee the eventual consistency. This also requires extensive efforts, because it is

not easy to implement consistency algorithms in a complex system.

Most of SOA systems usually need to utilize messaging middleware to implement message

dispatching. This middleware can easily become a bottleneck if there are requirements for availability

(part of nodes failed will not affect normal operation of the system), reliability (ensures messages are in

order and never repeated/lost even when part of nodes failed), functionality (e.g., publish-subscribe

pattern, distributing the tasks in a round-robin fashion) and etc.

The strength of SOA architecture lies with its high cohesion and low coupling characteristics.

Services are provided through predefined IPC interface, and are running in an isolated way (usually in a

separate node). SOA architecture has set a clear boundary for interfaces and functions, thus services

can be easily reused and replaced (any new services that have compatible IPC interface can replace

existing services).

From the point of view of software engineering and project management, each service itself has

enough high cohesion, and its implemented functions are independent, SOA services are easier to

maintain compared with interwoven AIO architecture. A developer only needs to take care of one

specific service, and don’t need to worry about any code modification or component replacement will

BaiY Application Platform

 Technical White Paper

56

affect other consumers, as long as there is no incompatible change to the API.

An application composed of multiple independent services is easier to implement function

modification or extension through the addition of new services or recombination of existing services.

5.4.2 nSOA Architecture

Through extensive exploration and practice with real projects, I have defined, implemented and

improved the nano-SOA architecture which incorporates the strengths of both SOA and AIO. In

nano-SOA, services that run independently are replaced by cross-platform plugins (IPlugin) that

support hot-plugging. A plugin dynamically exposes (register) and hides (unregister) its function

interfaces through (and only through) API Nexus, and consumes services provided by other plugins also

through API Nexus.

nano-SOA fully inherits the high cohesion and low coupling characteristics of SOA architecture.

Each plugin behaves like an independent service, has clear interface and boundary, and can be easily

reused or replaced. It is comparable to SOA from the maintenance perspective. Each plugin can be

developed and maintained separately, and a developer only needs to take care of his own plugin. By

the addition of new plugins and recombination of existing plugins, nano-SOA makes things easier to

modify or extend existing functions than SOA architecture.

nano-SOA is comparable to AIO with regard to performance and efficiency. All plugins run within

the same process, thus calling another plugin through API Nexus does not need any I/O or memory

copy or any other forms IPC consumption.

The deployment of nano-SOA is as simple as AIO. It can be deployed to a single node, and can

achieve high availability and horizontal scaling by deploying only a single cluster. The configuration of

nano-SOA is far simpler than SOA. Compared with AIO, configuring a list of modules to be loaded is the

only thing added for nano-SOA. However, all the configurations for nano-SOA can be maintained in

batch through utilizing a configuration management product. Streamlined deployment and

configuration process can simplify operation and maintenance efforts, and also significantly facilitate

establishing development and testing environments.

By using direct API calling through API Nexus, nano-SOA can avoid the dependence on messaging

middleware to the maximum extent. We can also improve the parallel computing performance by

plugging an inter-thread message queue (which is optimized through zero-copy and lock-free

algorithms) on it. This has greatly increased throughput, reduced delay, and also eliminated huge

efforts required for deploying and maintaining a high availability message dispatching cluster.

nano-SOA has minimized the requirement for inter-node cooperation and communication, not

imposing high demand for reliability, availability and functionality. In most cases, decentralized P2P

protocol such as Gossip is adequate to meet these requirements. Sometimes, inter-node

BaiY Application Platform

 Technical White Paper

57

communication can even be completely avoided.

From the nano-SOA perspective, DBC can be considered as a type of fundamental plugin for

almost all server-end applications. It was implemented and added into libapidbc beforehand because

of its wide use. libapidbc has established a firm foundation for the nano-SOA architecture, by offering

the key components like IPlugin, API Nexus and DBC.

nano-SOA, SOA and AIO are not mutually exclusive options. In real use cases, users can work out

the optimum design through combination of these three architecture patterns. For time-consuming

asynchronous operations (like video transcoding) without the need to wait for a result to be returned,

it is a preferred option to deploy it as an independent service to a dedicated server cluster with

acceleration hardware installed, because most of the consumptions are used for video encoding and

decoding. It is unnecessary to add it into an App Server as a plugin.

5.4.3 Port Switch Service (BYPSS)

BaiY Port Switch Service (BYPSS, pronounced "bypass") is designed for providing a high available,

strongly consistent and high performance distributed coordination and message dispatching service

which supports one trillion level ports, one million level nodes, and ten millions to billions of messages

processed per second. The key concepts of the service include:

 Connection: Each client (a server within an application cluster) node maintains at least one

TCP Keep-Alive connection with the port switch service.

 Port: Any number of ports can be registered for each connection. A port is described using a

UTF-8 character string, and must be globally unique. Registering a port will fail if the port is

already registered by another client node.

BYPSS offers the following API primitives:

 Waiting for Message (WaitMsg): Each node within the cluster should keep at least one TCP

Keep-Alive connection with the BYPSS, and call this method for message pushing. This

method upgrades the current connection from a message transmission connection to a

message receiving connection.

Each node number corresponds to only one message receiving connection. If a node

attempts to generate two message receiving connections at the same time, the earlier

connection will be disconnected, and all ports bound with that node will be unregistered.

 Relet: If BYPSS does not receive a relet request from a message receiving connection for a

specified time period, it will treat the node as being offline, and will release all the ports

BaiY Application Platform

 Technical White Paper

58

associated with this node. A relet operation is used for periodically providing heartbeat

signals to BYPSS.

 Port Registration (RegPort): After a connection is established, the client should send request

to BYPSS to register all the ports associated with the current node. A port registration

request can contain any number of ports to be registered. BYPSS will return a list of ports

(already occupied) that are failed to be registered. The caller can choose to subscribe port

release notification for the ports failed to be registered.

It is worth noting that each time a message receiving connection is re-established through

calling WaitMsg, the server need to register all the relevant ports again.

 Port Un-registration (UnRegPort): To unregister the ports associated with the current node. A

request can contain several ports for batch un-registration.

 Message Sending (SendMsg): To send a message (BLOB) to the specified port. The message

format is transparent to BYPSS. If the specified port is an empty string, the message will be

broadcasted to all nodes within BYPSS; sender can also specify multiple receiving ports to do

a multicast. If the specified port does not exist, the message will be discarded quietly. The

client can package multiple message sending commands within a single network request for

batch sending, The BYPSS server will package messages sent to the same node automatically

for batch message push.

 Port Query (QueryPort): To query node number and IP address associated with the node

currently owns the specified port. This operation is used for service discovery with fault

detection. This method is not needed for message sending (SendMsg) because the operation

is automatically executed while delivering a message. A request can contain several ports for

batch query.

 Node Query (QueryNode): To query information (e.g. IP address) associated with the

specified node. This operation is mainly used for node resolving with fault detection. A

request can contain several nodes for batch query.

Client connections within BYPSS are categorized into two types:

 Message receiving connection (1:1): It uses WaitMsg method for node registration and

message pushing, and keeps occupying all ports belong to current node using Relet. Each

node within the cluster should keep and only keep a single message receiving connection,

which is a Keep-Alive connection. It is recommended to always keep the connection active

and to complete Relet in a timely manner, because re-establishing a receiving connection will

require service electing again (port registration).

BaiY Application Platform

 Technical White Paper

59

 Message sending connection (1:N): All connections that are not upgraded using WaitMsg API

are deemed as sending connections. They use primitives like RegPort, UnRegPort, SendMsg

and QueryPort for non-pushing requests, without the need for using Relet to keep heartbeat.

Each node within the cluster maintains a message sending connection pool, so that the

worker threads can stay in communication with the port switch service.

Compared with traditional distribute coordination service and messaging middleware products,

the port switch service has the following characteristics:

 Functionality: The port switch service integrates standard message routing function into

distributed coordination services such as service electing (port registration), service discovery

(send message and query port information), fault detection (relet timeout) and distribute

locking (port registration and unregister notification). This high-performance message switch

service has distributed coordination capabilities. Also, it can be purely used as a service

electing and discovery service with fault detection, by using QueryPort and other interfaces.

 High-concurrency and high-performance: Implemented using C/C++/assembly languages;

maintains a message buffer queue for each connection, and all port definitions and all

messages to be forwarded are saved in memory (Full in-memory); there is no data replication

or status synchronization between master node and slave node; message sending and

receiving are implemented using pure async IO, enabling high-concurrency and

high-throughput message dispatch performance.

 Scalability: When single-node performance gets a bottleneck, service can scaling out by

cascading upper-level port switch service, similar to the three layers (access, aggregation, and

core) switch architecture in IDC.

 Availability: High availability insurance by completing fault detection and master/slave

switching within 5 milliseconds; quorum-based election algorithm, avoiding split brain due to

network partition.

 Consistency: A port can be owned by only one client node at any given time. It is impossible

that multiple nodes can succeed in registering and occupying the same port simultaneously.

 Reliability: All messages sent to an unregistered port (the port does not exist, or is

unregistered or expired) are discarded quietly. The system ensures that all messages sent to

registered ports are in order and unique, but messages may get lost in some extreme

conditions:

 Master/slave switching due to the port switch service is unavailable: All messages

queued to be forwarded will be lost. All the already registered nodes need to register

again, and all the already registered ports (services and locks) need election/acquirement

BaiY Application Platform

 Technical White Paper

60

again (register).

 A node receiving connection is recovered from disconnection: After the message

receiving connection was disconnected and then re-connected, all the ports that were

ever registered for this node will become invalid and need to be registered again. During

the time frame from disconnection to re-connection, all messages sent to the ports that

are bound with this node and have not been registered by any other nodes will be

discarded.

BYPSS itself is a message routing service that integrates fault detection, service election, service

discovery, distributed lock, and other distributed coordination functionalities. It has achieved superior

performance and concurrency at the premise of strong consistency, high availability and scalability

(scale-out), by sacrificing reliability in extreme conditions.

BYPSS can be treated as a cluster coordination and message dispatching service customized for

nano-SOA architecture. The major improvement of nano-SOA is, the model that each user request

needs to involve multiple service nodes is improved so that most of user requests need to involve only

different BMOD in the same process space.

In addition to making deployment and maintenance easier and the delay for request processing

dramatically reduced, the above improvement also brings the following two benefits:

 In SOA, distributed transaction with multiple nodes involved and eventual consistency issues

are simplified to a local ACID Transaction issue (from DBS perspective, transactions can still be

distributed). This has greatly reduced complexity and enhanced consistency for distributed

applications, and also has reduced inter-node communications (from inter-service IPC

communications turned out to be inner-process pointer passing) and improved the overall

efficiency.

 P2P node is not only easy to deploy and maintain, but also has simplified the distributed

coordination algorithm. Communications among nodes are greatly reduced, because the

tasks having high consistency requirements are completed within the same process space.

Reliability of messaging middleware also becomes less demanding (the inconsistency due to

message getting lost can be simply resolved by cache timeout or manual refreshing).

BYPSS allows for a few messages to be lost in extreme conditions, for the purpose of avoiding disk

writing and master/slave copying and promoting efficiency. This is a reasonable choice for nano-SOA.

Reliability Under Extreme Conditions

Traditional distributed coordination services are usually implemented using quorum-based

BaiY Application Platform

 Technical White Paper

61

consensus algorithms like Paxos and Raft. Their main purpose is to provide applications with a

high-availability service for accessing distributed metadata KV. The distributed coordination services

such as distributed lock, message dispatching, configuration sharing, role election and fault detection

are also offered. Common implementations of distributed coordination services include Google Chubby

(Paxos), Apache ZooKeeper (Fast Paxos), etcd (Raft), Consul (Raft+Gossip), and etc.

Poor performance and high network consumption are the major problems with consensus

algorithms like Paxos and Raft. For each access to these services, either write or read, it requires 2 to 4

times of network broadcasting within the cluster to confirm in voting manner that the current access is

acknowledged by the quorum. This is because the master node needs to confirm it has the support

from the majority while the operation is happening, and to confirm it remains to be the legal master

node.

In real cases, the overall performance is still very low and has strong impact to network IO, though

the read performance can be optimized by degradation the overall consistency of the system or adding

a lease mechanism. If we look back at the major accidents happened in Google, Facebook or Twitter,

many of them are caused by network partition or wrong configuration (human error). Those errors lead

to algorithms like Paxos and Raft broadcasting messages in an uncontrollable way, thus driving the

whole system crashed.

Furthermore, due to the high requirements of network IO (both throughput and latency), for

Paxos and Raft algorithm, it is difficult (and expensive) to deploy a distributed cluster across multiple

data centers with strong consistency (anti split brain) and high availability. For example: September 4,

2018, the cooling system failure of a Microsoft data center in South Central US caused Offi ce, Active

Directory, Visual Studio and other services to be offline for nearly 10 hours; Google GCE service was

disconnected for 12 hours and lost some data permanently on August 20, 2015; Alipay was interrupted

for several hours on May 27, 2015, July 22, 2016 and Dec 5, 2019; July 22, 2013 and Mar 29, 2023

WeChat service interruption Hours; and May 2017 British Airways paralyzed for a few days and other

major accidents both are due to the single IDC dependency.

Because most of the products that employ SOA architecture rely on messaging middleware to

guarantee the overall consistency, they have strict requirements for availability (part of nodes failed

will not affect normal operation of the system), reliability (ensures messages are in order and never

repeated/lost even when part of nodes failed), and functionality (e.g., publish-subscribe pattern,

distributing the tasks in a round-robin fashion). It is inevitable to use technologies that have low

performance but require high maintenance cost, such as high availability cluster, synchronization and

copy among nodes, and data persistence. Thus the message dispatching service often becomes a major

bottleneck for a distributed system.

Compared with Paxos and Raft, BYPSS also provides distributed coordination services such as fault

detection, service election, service discovery and distributed lock, as well as comparable consensus,

high availability, and the capability of resisting split-brain. Moreover, by eliminates nearly all of the high

BaiY Application Platform

 Technical White Paper

62

cost operations like network broadcast and disk IO, it has far higher performance and concurrency

capability than Paxos and Raft. It can be used to build large-scale distributed cluster system across

multiple data centers with no additional requirements of the network throughput and latency.

BYPSS allows for tens of millions of messages to be processed per second by a single node, and

guarantees that messages are in order and never repeated, leaving common middleware far behind in

terms of performance.

While having absolute advantages from performance perspective, BYPSS has to make a trade-off.

The compromise is the reliability in extreme conditions (two times per year on average; mostly resulted

from maintenance; controlled within low-load period; based on years of statistics in real production

environments), which has the following two impacts to the system:

 For distributed coordination services, each time the master node offline due to a failure, all

registered ports will forcibly become invalid, and all active ports need to be registered again.

For example, if a distributed Web server cluster treat a user as the minimum schedule unit,

and register a message port for each user who is logged in, after the master node of BYPSS is

offline due to a failure, each node will know that all the ports it maintains have became

invalid and it need to register all active (online) users again with the new BYPSS master.

Fortunately, this operation can be completed in a batch. Through the batch registration

interface, it is permitted to use a single request to register or unregister as much as millions

of ports simultaneously, improving request processing efficiency and network utilization. On a

Xeon processer (Haswell 2.0GHz) which was release in 2013, BYPSS is able to achieve a speed

of 1 million ports per second and per core (per thread). Thanks to the concurrent hash table

(each arena has its own full user mode reader/writer lock optimized by assembly) which was

developed by us, we can implement linear extension by simply increasing the number of

processor cores.

Specifically, under an environment with 4-core CPU and Gigabit network adapter, BYPSS is

capable of registering 4 millions of ports per second. Under an environment with 48-core CPU

and 10G network adapter, BYPSS is able to support registering nearly 40 millions of ports per

second (the name length of each of the ports is 16 bytes), almost reaching the limit for both

throughput and payload ratio. There is almost no impact to system perforce, because the

above scenarios rarely happen and re-registration can be done progressively as objects being

loaded.

To illustrate this, we consider the extreme condition when one billion users are online

simultaneously. Though applications register a dedicated port (for determining user owner

and for message distribution) for each of the users respectively, it is impossible that all these

one billion users will press the refresh button simultaneously during the first second after

BaiY Application Platform

 Technical White Paper

63

recovering from fault. Conversely, these online users will usually return to the server after

minutes, hours or longer, which is determined by the intrinsic characteristics of Web

applications (total number of online users = the number of concurrent requests per second ×

average user think time). Even we suppose all these users are returned within one minute

(the average think time is one minute) which is a relatively tough situation, BYPSS only need

to process 16 million registration requests per second, which means a 1U PC Server with

16-core Haswell and 10G network adapter is enough to satisfy the requirements.

As a real example, the official statistics show there were 180 million active users (DAU) in

Taobao.com on Nov 11 (“double 11”), 2015, and the maximum number of concurrent online

users is 45 million. We can make the conclusion that currently the peak number of concurrent

users for huge sites is far less than the above mentioned extreme condition. BYPSS is able to

support with ease even we increase this number tens of times.

 On the other hand, from message routing and dispatching perspective, all messages queuing

to be forwarded will be lost permanently whenever the master node is offline due to a fault.

Fortunately, the nano-SOA does not reply on messaging middleware to implement

cross-service transaction consistency, thus does not have strict reliability requirements for

message delivery.

In the nSOA architecture, the worst consequence of the loss of messages is the corresponding

user requests failed, but data consistency is still guaranteed and “half success” issue will

never occur. This is enough for most use cases. Even Alipay and the china four largest banks’

E-bank applications occasionally have operation failures. This will not cause real problems

only if there is no corruption with bank account data. User can just try again later one this

case.

Moreover, the BYPSS service has reduced the time that messages need to wait in the queue,

through technologies such as optimized async IO and message batching. This message

batching mechanism consists of message pushing and message sending:

BYPSS offers a message batch sending interface, allowing for millions of messages to be

submitted simultaneously within a single request. BYPSS also has a message batch pushing

mechanism. If message surge occurs in a node and a large number of messages has arrived

and are cumulated in the queue, BYPSS server will automatically enable message batch

pushing mode, which packs plenty of messages into a single package, and pushes it to the

destination node.

The above mentioned batch processing mechanism has greatly improved message processing

efficiency and network utilization. It guarantees the server-end message queue is almost

empty in most cases, and thus has reduced the possibility of message loss when the master

node is offline.

BaiY Application Platform

 Technical White Paper

64

Although the probability of message loss is very low, and the nano-SOA architecture does not

reply on messaging middleware to guarantee reliability, there are a few cases which have high

requirements for message delivery. The following solutions can satisfy these requirements:

 Implement the acknowledgment and timeout retransmission mechanism by self: After

sending a message to the specified port, the sender will wait for a receipt to be returned.

If no receipt is received during the specified time period, it will send the request again.

 Directly send RPC request to the owner node of the port: The message sender obtains IP

address of the owner node using port query commands, and then establishes direct

connection with this owner node, sends a request and waits for the result to be returned.

During the process, BYPSS is responsible for service election and discovery, and does not

route messages directly. This solution is also recommended for inter-node

communications with large volume of data stream exchanges (e.g., video streaming and

video transcoding, deep learning), to avoid BYPSS becoming an IO bottleneck.

 Use third-party messaging middleware: If there is a large quantity of message delivery

requests that have strict reliability requirements and using complex rules, it is suggested

to deploy a third-party message dispatching cluster to process these requests.

Of course, there is actually no completely reliable message queue service (which can

ensure that messages are not lost, duplicated, or out of order). Therefore, when it is

really necessary to implement distributed transactions across application server nodes, it

is recommended to implement BYPSS and BYDMQ with algorithms such as SAGA. For

details, see: 5.4.4 Distributed Message Queue Service (BYDMQ).

In brief, we can treat BYPSS as a cluster coordination and message dispatching service customised

for the nano-SOA architecture. BYPSS and nano-SOA are mutually complementary. BYPSS is ideal for

implementing a high performance, high availability, high reliability and strong consistency distributed

system with nano-SOA architecture. It can substantially improve the overall performance of the system

at the price of slightly affecting system performance under extreme conditions.

BYPSS Characteristics

The following table gives characteristic comparisons between BYPSS and some distributed

coordination products that utilize traditional consensus algorithms like Paxos and Raft.

Item BYPSS ZooKeeper, Consul, etcd…

Availability High availability; supports multiple-active IDC. High availability, but difficult to support

multi-active IDC.

BaiY Application Platform

 Technical White Paper

65

Item BYPSS ZooKeeper, Consul, etcd…

Consistency Strong consistency; the master node is elected

by the quorum.

Both read and write operations provide strong

consistency guarantees.

Strong write consistency; multi replica.

In order to improve performance, most

implements sacrifice consistency when

reading (only Consul supports

configuring strong consistent read

mode).

Concurrency Tens of millions of concurrent connections;

hundreds of thousands of concurrent nodes.

Up to 5,000 nodes.

Capacity Each 10GB memory can hold at least 100

million message ports; each 1TB memory can

hold at least ten billion message ports;

two-level concurrent Hash table structure

allows capacity to be linearly extended to PB

level.

Usually supports up to hundreds of

thousands of key-value pairs; this

number is even smaller when change

notification is enabled.

Delay The delay per request within the same IDC is at

sub-millisecond level (0.5ms in Aliyun.com);

the delay per request for different IDCs within

the same region is at millisecond level (2ms in

Aliyun.com).

Because each request requires 2 to 4

times of network broadcasting and

multiple times of disk I/O operations,

the delay per operation within the same

IDC is over 10 milliseconds; the delay

per request for different IDCs is more

longer (see the following paragraphs).

Performance Each 1Gbps bandwidth can support nearly 4

million times of port registration and

unregistration operations per second. On an

entry-level Haswell processor (2013), each core

can support 1 million times of the above

mentioned operations per second. The

performance can be linearly extended by

increasing bandwidth and processor core. Up to

300 million operations per second on modern

processors and dual-port 40 Gigabit NICs.

The characteristics of the algorithm

itself make it impossible to support

batch operations; less than 200 requests

per second under the same test

conditions. (Because each atomic

operation requires 2 to 4 times of

network broadcasting and multiple

times of disk I/O operations, it is

meaningless to add the batch

operations supporting.)

Network

utilization

High network utilization: both the server and

client have batch packing capabilities for port

registration, port unregistration, port query,

node query and message sending; network

payload ratio can be close to 100%.

Low network utilization: each request

use a separate package (TCP Segment,

IP Packet, Network Frame), Network

payload ratio is typically less than 5%.

Scalability Yes: can achieve horizontal scaling in cascading

style.

No: more nodes the cluster contains

(the range for broadcasting and disk I/O

operations becomes wider), the worse

the performance is.

Partition The system goes offline when there is no The system goes offline when there is

BaiY Application Platform

 Technical White Paper

66

Item BYPSS ZooKeeper, Consul, etcd…

tolerance quorum partition, but broadcast storm will not

occur.

no quorum partition. It is possible to

produce a broadcast storm aggravated

the network failure.

Message

dispatching

Yes and with high performance: both the server

and client support automatic message

batching.

None.

Configuration

Management

No: BYPSS believes the configuration data

should be managed by dedicate products like

Redis, MySQL, MongoDB and etc. Of course the

distribute coordination tasks of these CMDB

products (e.g. master election) can still be done

by the BYPSS.

Yes: Can be used as a simple CMDB. This

confusion on the functions and

responsibilities making capacity and

performance worse.

Fault

recovery

Need to re-generate a state machine, which

can be completed at tens of millions of or

hundreds of millions of ports per second;

practically, this has no impact on performance.

There is no need to re-generate a state

machine.

Among the above comparisons, delay and performance mainly refers to write operations. This is

because almost all of the meaningful operations associated with a typical distributed coordination tasks

are write operations. For example:

Operations From service coordination perspective From distributed lock perspective

Port

registration

Success: service election succeeded;

becomes the owner of the service.

Failed: successfully discover the current

owner of the service.

Success: lock acquired successfully.

Failed: failed to acquire the lock, returning

the current lock owner.

Port

unregistration

Releases service ownership. Releases lock.

Unregistration

notification

The service has offline; can update local

query cache or participate in service

election.

Lock is released; can attempt to acquire the

lock again.

As shown in the above table, the port registration in BYPSS corresponds to “write/create KV pair”

in traditional distributed coordination products. The port unregistration corresponds to “delete KV

pair”, and the unregistration notification corresponds to “change notification”.

To achieve maximum performance, we will not use read-only operations like query in production

environments. Instead, we hide query operations in write requests like port registration. If the request

is successful, the current node will become the owner. If registration failed, the current owner of the

requested service will be returned. This has also completed the read operations like owner query

(service discovery / name resolution).

BaiY Application Platform

 Technical White Paper

67

It is worth noting that even a write operation (e.g., port registration) failed, it is still accompanied

by a successful write operation. The reason is: There is a need to add the current node that initiated

the request into the change notification list of specified item, in order to push notification messages to

all interested nodes when a change such as port unregistration happens. So the write performance

differences greatly affect the performance of an actual application.

HAC Manager Utility

BYPSS also includes a companion tool called HAC Manager. This utility use BYPSS to complete the

service election and fault detection tasks. If multiple HAC manager instances competition the

ownership of same service simultaneously, only the winner can start the service/daemon by executing

a user specified command. Accordingly, the service/daemon will be stopped when it lose the

ownership.

With the distributed storage technology such as DRBD, HAST, DataKeeper, DFS, Ceph, GlusterFS,

Lustre and others , or shared storage solutions like SAN, HAC Manager can easily convert a single point

service (e.g.: the traditional SQL DB, Full Test Search Engine, Report Generating Service, and etc.) to the

high availability cluster (HAC) without split brain issues.

Note: The above nano-SOA architecture and the BYPSS distributed coordination algorithm are all

subject to a number of national and international patents protections.

BYPSS based High performance cluster

From the high-performance cluster (HPC) perspective, the biggest difference between BYPSS and

the traditional distributed coordination products (described above) is mainly reflected in the following

two aspects:

1. High performance: BYPSS eliminates the overhead of network broadcasting, disk IO, add the

batch support operations and other optimizations. As a result, the overall performance of the

distributed coordination service has been increased by tens of thousands of times.

2. High capacity: at least 100 million message ports per 10GB memory, due to the rational use of

the data structure such as concurrent hash table, the capacity and processing performance

can be linearly scaled with the memory capacity, the number of processor cores, the network

card speed and other hardware upgrades.

Due to the performance and capacity limitations of traditional distributed coordination services, in

a classical distributed cluster, the distributed coordination and scheduling unit is typically at the service

BaiY Application Platform

 Technical White Paper

68

or node level. At the same time, the nodes in the cluster are required to operate in stateless mode as

far as possible .The design of service node stateless has low requirement on distributed coordination

service, but also brings the problem of low overall performance and so on.

BYPSS, on the other hand, can easily achieve the processing performance of tens of millions of

requests per second, and trillions of message ports capacity. This provides a good foundation for the

fine coordination of distributed clusters. Compared with the traditional stateless cluster, BYPSS-based

fine collaborative clusters can bring a huge overall performance improvement.

User and session management is the most common feature in almost all network applications. We

first take it as an example: In a stateless cluster, the online user does not have its owner server. Each

time a user request arrives, it is routed randomly by the reverse proxy service to any node in the

backend cluster. Although LVS, Nginx, HAProxy, TS and other mainstream reverse proxy server support

node stickiness options based on Cookie or IP, but because the nodes in the cluster are stateless, so the

mechanism simply increases the probability that requests from the same client will be routed to a

certain backend server node and still cannot provide a guarantee of ownership. Therefore, it will not be

possible to achieve further optimizations.

While benefiting from BYPSS's outstanding performance and capacity guarantee, clusters based on

BYPSS can be coordinated and scheduled at the user level (i.e.: registering one port for each active user)

to provide better overall performance. The implementation steps are:

1. As with the traditional approach, when a user request arrives at the reverse proxy service, the

reverse proxy determines which back-end server node the current request should be

forwarded to by the HTTP cookie, IP address, or related fields in the custom protocol. If there

is no sticky tag in the request, the lowest-load node in the current back-end cluster is selected

to process the request.

2. After receiving the user request, the server node checks to see if it is the owner of the

requesting user by looking in the local memory table.

a) If the current node is already the owner of the user, the node continues processing the

user request.

b) If the current node is not the owner of the user, it initiates a RegPort request to BYPSS,

attempting to become the owner of the user. This request should be initiated in batch

mode to further improve network utilization and processing efficiency.

i. If the RegPort request succeeds, the current node has successfully acquired the

user's ownership. The user information can then be loaded from the backend

database into the local cache of the current node (which should be optimized using

bulk load) and continue processing the user request.

BaiY Application Platform

 Technical White Paper

69

ii. If the RegPort request fails, the specified user's ownership currently belongs to

another node. In this case, the sticky field that the reverse proxy can recognize, such

as a cookie, should be reset and point it to the correct owner node. Then notifies

the reverse proxy service or the client to retry.

Compared with traditional architectures, taking into account the stateless services also need to

use MySQL, Memcached or Redis and other stateful technologies to implement the user and session

management mechanism, so the above implementation does not add much complexity, but the

performance improvement is very large, as follows:

Item BYPSS HPC Traditional Stateless Cluster

1

Op.

Eliminating the deployment and maintenance costs of

the user and session management cluster.

Need to implement and maintain the

user management cluster separately,

and provides dedicated high-availability

protection for the user and session

management service. Increases the

number of fault points, the overall

system complexity and the maintenance

costs.

2

Net.

Nearly all user matching and session verification tasks

for a client request can be done directly in the

memory of its owner node. Memory access is a

nanosecond operation, compared to millisecond-level

network query delay, performance increase of more

than 100,000 times. While effectively reducing the

network load in the server cluster.

It is necessary to send a query request

to the user and session management

service over the network each time a

user identity and session validity is

required and wait for it to return a

result. Network load and the latency is

high.

Because in a typical network application,

most user requests need to first

complete the user identification and

session authentication to continue

processing, so it is a great impact on

overall performance.

3

Cch.

Because each active user has a definite owner server

at any given time, and the user is always inclined to

repeat access to the same or similar data over a

certain period of time (such as their own properties,

the product information they have just submitted or

viewed, and so on). As a result, the server's local data

caches tend to have high locality and high hit rates.

Compared with distributed caching, the advantages of

No dedicated owner server, user

requests can be randomly dispatched to

any node in the server cluster; Local

cache hit rate is low; Repeatedly caching

more content in different nodes; Need

to rely on the distributed cache at a

higher cost.

The read pressure of the backend

BaiY Application Platform

 Technical White Paper

70

Item BYPSS HPC Traditional Stateless Cluster

local cache is very obvious:

1. Eliminates the network latency required by

query requests and reduces network load (See

"Item 2" in this table for details).

2. Get the expanded data structures directly from

memory, without a lot of data serialization and

deserialization work.

3. Only the owner node caches the corresponding

data, which also avoids the inconsistency

between the distributed cache and the DB, and

provides a strong consistency guarantee.

The server's local cache hit rate can be further

improved if the appropriate rules for user owner

selection can be followed, for example:

a) Group users by tenant (company, department,

site);

b) Group users by region (geographical location,

map area in the game);

c) Group users by interest characteristics (game

team, product preference).

And so on, and then try to assign users belonging to

the same group to the same server node (or to the

same set of nodes). Obviously, choice an appropriate

user grouping strategy can greatly enhance the server

node's local cache hit rate.

This allows most of the data associated with a user or

a group of users to be cached locally. This not only

improves the overall performance of the cluster, but

also eliminates the dependency on the distributed

cache. The read pressure of the backend database is

also greatly reduced.

database server is high. Additional

optimizations are required, such as

horizontal partitioning, vertical

partitioning, and read / write

separation.

There is an unavoidable data

inconsistency problem between the

distributed cache and the DB (unless a

protocol such as Paxos/Raft is used

between the distributed cache and the

DB to ensure consistency, but the huge

performance loss that follows will also

make the distributed cache meaningless

-- this is even slower than not having a

distributed cache).

4

Upd.

Due to the deterministic ownership solution, any user

can be ensured to be globally serviced by a particular

owner node within a given time period in the cluster.

Coupled with the fact that the probability of a sudden

failure of a modern PC server is also very low.

Cumulative write optimization and batch

write optimization cannot be

implemented because each request

from the user may be forwarded to a

different server node for processing. The

write pressure of the backend database

BaiY Application Platform

 Technical White Paper

71

Item BYPSS HPC Traditional Stateless Cluster

Thus, the frequently changing user properties with

lower importance or timeliness can be cached in

memory. The owner node can update these changes

to the database in batches until they are accumulated

for a period of time.

This can greatly reduce the write pressure of the

backend database.

For example, the shop system may collect and record

user preference information in real time as the user

browses (e.g., views each product item). The

workload is high if the system needs to immediately

update the database at each time a user views a new

product. Also considering that due to hardware

failure, some users who occasionally lose their last

few hours of product browsing preference data are

perfectly acceptable. Thus, the changed data can be

temporarily stored in the local cache of the owner

node, and the database is updated in batches every

few hours.

Another example: In the MMORPG game, the user's

current location, status, experience and other data

values are changing at any time. The owner server

can also accumulate these data changes in the local

cache and update them to the database in batches at

appropriate intervals (e.g.: every 5 minutes).

This not only significantly reduces the number of

requests executed by the backend database, but also

eliminates a significant amount of disk flushing by

encapsulating multiple user data update requests into

a single batch transaction, resulting in further

efficiency improvements.

In addition, updating user properties through a

dedicated owner node also avoids contention issues

when multiple nodes are simultaneously updating the

same object in a stateless cluster. It further improves

database performance.

is very high.

A plurality of nodes may compete to

update the same record simultaneously,

further increasing the burden on the

database.

Additional optimizations are required,

such as horizontal partitioning and

vertical partitioning, However, these

optimizations will also result in side

effects such as "need to implement

distributed transaction support at the

application layer."

BaiY Application Platform

 Technical White Paper

72

Item BYPSS HPC Traditional Stateless Cluster

5

Push

Since all sessions initiated by the same user are

managed centrally in the same owner node, it is very

convenient to push an instant notification message

(Comet) to the user.

If the object sending the message is on the same

node as the recipient, the message can be pushed

directly to all active sessions belong to the recipient.

Otherwise, the message may simply be delivered to

the owner node of the recipient. Message delivery

can be implemented using BYPSS (send messages to

the corresponding port of the recipient directly,

should enable the batch message sending mechanism

to optimize). Of course, it can also be done through a

dedicated high-performance message middleware

such as BYDMQ.

If the user's ownership is grouped as described in

item 3 of this table, the probability of completing the

message push in the same node can be greatly

improved. This can significantly reduce the

communication between servers.

Therefore, we encourage customizing the user

grouping strategy based on the actual situation for

the business properly. A reasonable grouping strategy

can achieve the desired effect, that is, most of the

message push occurs directly in the current server

node.

For example, for a game application, group players by

map object and place players within the same map

instance to the same owner node - Most of the

message push in the traditional MMORPG occurs

between players within the same map instance (AOI).

Another example: For CRM, HCM, ERP and other SaaS

applications, users can be grouped according to the

company, place users belong to the same enterprise

to the same owner node - It is clear that for such

Because different sessions of the same

user are randomly assigned to different

nodes, there is a need to develop,

deploy, and maintain a specialized

message push cluster. It also needs to be

specifically designed to ensure the high

performance and high availability of the

cluster.

This not only increases the development

and maintenance costs, but also

increases the internal network load of

the server cluster, because each

message needs to be forwarded to the

push service before it can be sent to the

client. The processing latency of the user

request is also increased.

BaiY Application Platform

 Technical White Paper

73

Item BYPSS HPC Traditional Stateless Cluster

enterprise applications, nearly 100% of the

communications are from within the enterprise

members.

The result is a near 100% local message push rate: the

message delivery between servers can almost be

eliminated. This significantly reduces the internal

network load of the server cluster.

6

Bal.

Clusters can be scheduled using a combination of

active and passive load balancing.

Passive balancing: Each node in the cluster

periodically unloads users and sessions that are no

longer active, and notifies the BYPSS service to bulk

release the corresponding ports for those users. This

algorithm implements a macro load balancing (in the

long term, clusters are balanced).

Active balancing: The cluster selects the load

balancing coordinator node through the BYPSS

service. This node continuously monitors the load of

each node in the cluster and sends instructions for

load scheduling (e.g.: request node A to transfer

5,000 users owned by it to Node B). Unlike the

passive balancing at the macro level, the active

balancing mechanism can be done in a shorter time

slice with quicker response speed.

Active balancing is usually effective when some of the

nodes in the cluster have just recovered from the

failure (and therefore are in no-load state), it reacts

more rapidly than the passive balancing. For Example:

In a cluster that spans multiple active IDCs, an IDC

resumes on-line when a cable fault has just been

restored.

If the node stickiness option is enabled

in the reverse proxy, its load balancing is

comparable to the BYPSS cluster's

passive balancing algorithm.

If the node stickiness option in the

reverse proxy is not enabled, its balance

is less than the BYPSS active balance

cluster when recovering from a failure.

At the same time, In order to ensure

that the local cache hit rate and other

performance indicators are not too bad,

the administrator usually does not

disable the node sticky function.

In addition, SOA architecture tends to

imbalance between multiple services,

resulting in some services overload, and

some light-load, nano-SOA cluster

without such shortcomings.

It is worth mentioning that such a precise collaborative algorithm does not cause any loss in

availability of the cluster. Consider the case where a node in a cluster is down due to a failure: At this

point, the BYPSS service will detect that the node is offline and automatically release all users

belonging to that node. When one of its users initiates a new request to the cluster, the request will be

routed to the lightest node in the current cluster (See step 2-b-i in the foregoing). This process is

BaiY Application Platform

 Technical White Paper

74

transparent to the user and does not require additional processing logic in the client.

The above discussion shows the advantages of the BYPSS HPC cluster fine coordination capability,

taking the user and session management functions that are involved in almost all network applications

as an example. But in most real-world situations, the application does not just include user

management functions. In addition, applications often include other objects that can be manipulated

by their users. For example, in Youku.com, tudou.com, youtube.com and other video sites, in addition

to the user, at least some "video objects" can be played by their users.

Here we take the "video object" as an example, to explore how the use the fine scheduling

capabilities of BYPSS to significantly enhance cluster performance.

In this hypothetical video-on-demand application, similar to the user management function

described above, we first select an owner node for each active video object through the BYPSS service.

Secondly, we will divide the properties of a video object into following two categories:

1. Common Properties: Contains properties that are less updated and smaller in size. Such as

video title, video introduction, video tag, video author UID, video publication time, ID of the

video stream data stored in the object storage service (S3 / OSS), and the like. These

properties are all consistent with the law of “read more write less”, or even more, most of

these fields cannot be modified after the video is published.

For such small-size, less-changed fields, they can be distributed in the local cache of each

server node in the current cluster. Local memory caches have advantages such as high

performance, low latency, and no need for serialization, plus the smaller size of the objects in

cache. Combined with strategies to further enhance the cache locality, such as user

ownership grouping, the overall performance can be improved effectively through a

reasonable memory overhead (see below).

2. Dynamic Properties: Contains all properties that need to be changed frequently, or larger in

size. Such as: video playback times, "like" and "dislike" times, scores, number of favours,

number of comments, and contents of the discussion forum belong to the video and so on.

We stipulate that such fields can only be accessed by the owner of the video object. Other

nodes need to send a request to the corresponding owner to access these dynamic attributes.

This means that we use the election mechanism provided by BYPSS to hand over properties

that require frequent changes (updating the database and performing cache invalidation) or

requiring more memory (high cache cost) to the appropriate owner node for management

and maintenance. This result in a highly efficient distributed computing and distributed

caching mechanism, greatly improving the overall performance of the application (see

below).

BaiY Application Platform

 Technical White Paper

75

In addition, we also stipulate that any write operation to the video object (whether for common or

dynamic properties) must be done by its owner. A non-owner node can only read and cache the

common properties of a video object; it cannot read dynamic properties and cannot perform any

update operations.

Therefore, we can simply infer that the general logic of accessing a video object is as follows:

1. When a common property read request arrives at the server node, the local cache is checked.

If the cache hit, then return the results directly. Otherwise, the common part of the video

object is read from the backend database and added to the local cache of current node.

2. When an update request or dynamic property read request arrives, it checks whether the

current node is the owner of the corresponding video object through the local memory table.

a) If the current node is already the owner of the video, the current node continues to

process this user request: For read operations, the result is returned directly from the

local cache of the current node; depending on the situation, write operations are either

accumulated in the local cache or passed directly to the backend database (the local

cache is also updated simultaneously).

b) If the current node is not the owner of the video but finds an entry matching the video in

the local name resolution cache table, it forwards the current request to the

corresponding owner node.

c) If the current node is not the owner of the video and does not find the corresponding

entry in the local name resolution cache table, it initiates a RegPort request to BYPSS and

tries to become the owner of the video. This request should be initiated in batch mode

to further improve network utilization and processing efficiency.

i. If the RegPort request succeeds, then the current node has successfully acquired the

ownership of the video. At this point, the video information can be loaded from the

backend database into the local cache of the current node (which should be

optimized using bulk loading) and continue processing the request.

ii. If the RegPort request fails, the specified video object is already owned by another

node. In this case, the video and its corresponding owner ID are added to the local

name resolution cache table, and the request is forwarded to the corresponding

owner node for processing.

Note: Because BYPSS can push notifications to all nodes that are interested in this

event each time the port is unregistered (whether due to explicit ownership release,

or due to node failure offline). So the name resolution cache table does not require

BaiY Application Platform

 Technical White Paper

76

a TTL timeout mechanism similar to the DNS cache. It only needs to delete the

corresponding entry if the port deregistration notice is received or the LRU cache is

full. This not only improves the timeliness and accuracy of entries in the lookup

table, but also effectively reduces the number of RegPort requests that need to be

sent, improving the overall performance of the application.

Compared with the classic stateless SOA cluster, the benefits of the above design are as follows:

Item BYPSS HPC Traditional Stateless Cluster

1

Op.

The distributed cache structure is based on

ownership, it eliminates the deployment and

maintenance costs of distributed cache clusters such

as Memcached and Redis.

Distributed cache clusters need to be

implemented and maintained

separately, increase overall system

complexity.

2

Cch.

A common property read operation will hit the local

cache. If the owner node selection strategy that

"Group users according to their preference

characteristics" is used, then the cache locality will be

greatly enhanced. Furthermore, the local cache hit

rate will increase and the cache repetition rate in the

different nodes of the cluster will decrease.

As mentioned earlier, compared to distributed cache,

the local cache can eliminate network latency, reduce

network load, avoid frequent serialization and

deserialization of data structures, and so on.

In addition, dynamic properties are implemented

using distributed cache based on ownership, which

avoids the problems of frequent invalidation and data

inconsistency of traditional distributed caches. At the

same time, because the dynamic properties are only

cached on the owner node, the overall memory

utilization of the system is also significantly improved.

No dedicated owner server, user

requests can be randomly dispatched to

any node in the server cluster; Local

cache hit rate is low; Repeatedly caching

more content in different nodes; Need

to rely on the distributed cache at a

higher cost.

The read pressure of the backend

database server is high. Additional

optimizations are required, such as

horizontal partitioning, vertical

partitioning, and read / write separation.

Furthermore, even the CAS atomic

operation based on the Revision field

and other similar improvements can be

added to the Memcached, Redis and

other products. These independent

distributed cache clusters still do not

provide strong consistency guarantees

(i.e.: The data in the cache may not be

consistent with the records in the

backend database).

3

Upd.

Due to the deterministic ownership solution, It is

ensured that all write and dynamic property read

operations of video objects are globally serviced by a

particular owner node within a given time period in

the cluster. Coupled with the fact that the probability

Cumulative write optimization and batch

write optimization cannot be

implemented because each request may

be forwarded to a different server node

for processing. The write pressure of the

BaiY Application Platform

 Technical White Paper

77

Item BYPSS HPC Traditional Stateless Cluster

of a sudden failure of a modern PC server is also very

low.

Thus, the frequently changing dynamic properties

with lower importance or timeliness can be cached in

memory. The owner node can update these changes

to the database in batches until they are accumulated

for a period of time.

This can greatly reduce the write pressure of the

backend database.

For example: the video playback times, "like" and

"dislike" times, scores, number of favours, references

and other properties will be changed intensively with

every user clicks. If the system needs to update the

database as soon as each associated click event is

triggered, the workload is high. Also considering that

due to hardware failure, the loss of a few minutes of

the above statistics is completely acceptable. Thus,

the changed data can be temporarily stored in the

local cache of the owner node, and the database is

updated in batches every few minutes.

This not only significantly reduces the number of

requests executed by the backend database, but also

eliminates a significant amount of disk flushing by

encapsulating multiple video data update requests

into a single batch transaction, resulting in further

efficiency improvements.

In addition, updating video properties through a

dedicated owner node also avoids contention issues

when multiple nodes are simultaneously updating the

same object in a stateless cluster. It further improves

database performance.

backend database is very high.

A plurality of nodes may compete to

update the same record simultaneously,

further increasing the burden on the

database.

Additional optimizations are required,

such as horizontal partitioning and

vertical partitioning, However, these

optimizations will also result in side

effects such as "need to implement

distributed transaction support at the

application layer."

4

Bal.

Clusters can be scheduled using a combination of

active and passive load balancing.

Passive balancing: Each node in the cluster

periodically unloads videos that are no longer active,

When recovering from a fault, the

balance is less than the BYPSS active

balanced cluster. However, there is no

significant difference under normal

circumstances.

BaiY Application Platform

 Technical White Paper

78

Item BYPSS HPC Traditional Stateless Cluster

and notifies the BYPSS service to bulk release the

corresponding ports for those videos. This algorithm

implements a macro load balancing (in the long term,

clusters are balanced).

Active balancing: The cluster selects the load

balancing coordinator node through the BYPSS

service. This node continuously monitors the load of

each node in the cluster and sends instructions for

load scheduling (e.g.: request node A to transfer

10,000 videos owned by it to Node B). Unlike the

passive balancing at the macro level, the active

balancing mechanism can be done in a shorter time

slice with quicker response speed.

Active balancing is usually effective when some of the

nodes in the cluster have just recovered from the

failure (and therefore are in no-load state), it reacts

more rapidly than the passive balancing. For Example:

In a cluster that spans multiple active IDCs, an IDC

resumes on-line when a cable fault has just been

restored.

In addition, SOA architecture tends to

imbalance between multiple services,

resulting in some services overload, and

some light-load, nano-SOA cluster

without such shortcomings.

Similar to the previously mentioned user management case, the precise collaboration algorithm

described above does not result in any loss of service availability for the cluster. Consider the case

where a node in a cluster is down due to a failure: At this point, the BYPSS service will detect that the

node is offline and automatically release all videos belonging to that node. When a user accesses these

video objects next time, the server node that received the request takes ownership of the video object

from BYPSS and completes the request. At this point, the new node will (replace the offline fault node)

becomes the owner of this video object (See step 2-c-i in the foregoing). This process is transparent to

the user and does not require additional processing logic in the client.

The above analysis of "User Management" and "Video Services" is just an appetizer. In practical

applications, the fine resource coordination capability provided by BYPSS through its high-performance,

high-capacity features can be applied to the Internet, telecommunications, Internet of Things, big data

processing, streaming computing and other fields.

We will continue to add more practical cases, for your reference.

BaiY Application Platform

 Technical White Paper

79

5.4.4 Distributed Message Queue Service (BYDMQ)

The BaiY Distributed Message Queuing Service (BYDMQ, pronounced "by dark") is a distributed

message queue service with strong consistency, high availability, high throughput, low latency and

linear scale-out. It can support a single point of tens of millions of concurrent connections and a single

point of tens of millions of message forwarding performance per second, and supports linear horizontal

scaling out of the cluster.

BYDMQ itself also relies on BYPSS to perform distributed coordination such as service elections,

service discovery, fault detection, distributed locks, and message dispatching. Although BYPSS also

includes high-performance message routing and dispatching functions, its main design goal is to deliver

distributed coordination-related control-type signals such as task scheduling. On the other hand,

BYDMQ is focused on high-throughput, low-latency, large-scale business message dispatching. After the

business related messages are offloaded to BYDMQ, the work pressure of BYPSS can be greatly

reduced.

Figure 14

As shown in Figure 14, in the typical use case, BYDMQ and App Server cluster each have their own

BYPSS cluster which are responsible for their respective distributed coordination tasks. The App cluster

relies on BYPSS1 to complete distributed coordination, while its message communication relies on the

BYDMQ cluster.

However, App Server and BYDMQ clusters can also share the same BYPSS service in a

development / test environment, or a production environment with small business volume. It should

also be noted that the "independent cluster" described herein refers only to logical independe nce.

Physically, even two logically independent BYPSS clusters can share physical resources. For example, an

BaiY Application Platform

 Technical White Paper

80

Arbiter node can be shared by multiple BYPSS clusters; even Master and Slave nodes in two BYPSS

clusters can become backup nodes of each other. This simplifies the operation and maintenance

management burden, and effectively save resources such as server hardware and energy consumption.

Before we continue to introduce the main features of BYDMQ, we first need to clarify a concept:

the reliability of message queue (message middleware, MQ). As we all know, "reliable messaging"

consists of three elements: the delivery process can be called reliable only if there are no missing,

unordered or duplicate messages. Regrettably, there is currently no real message queue product that

satisfies the above three conditions at the same time. Or in other words, It is impractical to implement

a message queue product that satisfies all of the above three elements within an acceptable cost

range.

To illustrate this issue, consider the following case:

Figure 15

As shown in the figure above, in this case, the message producer consists of nodes A, B, and C, the

message consumer contains nodes X, Y, and Z, and the producers deliver messages to consumers

through a message queue. Now the message producer has produced 5 messages and successfully

submitted them to the message queue in sequence.

Under such circumstances, let's discuss the reliability of message delivery one by one:

 The message should not be lost: this is the simplest one among the three elements. It can be

split into two steps to discuss:

 Storage reliability: It can be ensured by synchronously replicating each message to other

nodes in the message queue service and make sure the data is written to disk. It also

needs to use distributed consensus protocols such as Paxos and Raft to ensure

consistency between multiple replicas. However, it is clear that this approach can greatly

reduce the performance of the Message Queuing Services (thousands or even tens of

thousands of times) due to increased disk IO, network replication, and consensus voting

BaiY Application Platform

 Technical White Paper

81

steps compared to a pure memory solution without replicas.

 ACK mechanism: When the producer submits a message to the message queue or the

message queue delivers the message to the consumer, an ACK mechanism is added to

confirm that the message delivery is successful. The sender resends (reposts) the

message if it does not receive the ACK mechanism within the specified time.

Although the above two steps can ensure that the message will not be lost (at least once

delivery), it can be seen that its overhead is very large, and the performance degradation

is very significant.

At the same time, it should be noted that the technologies such as fault detection and

master-slave switching between multiple replicas, and timeout retransmission during

message transmission and reception will introduce their respective delays. And the delay

introduced in each of these steps usually exceeds a few seconds.

In most of the real user scenario, these extra delays make the "message not lost"

guarantee not so usefully: Today's users rarely wait patiently for a long time after

initiating a request (such as opening a link, submitting a form, etc.) - if they still don't get

a response after waiting a few seconds, they most likely close or refresh the page at all.

At this point, regardless of whether the user has closed the page or re-initiated the

request, the message (old request) that has been delayed for a few seconds (or even

longer) is now worthless. Not only that, the processing of these requests is to consume

network, computing and storage resources in vain because the processing results are no

longer interested by anyone.

 The message should not be duplicated: Consider the ACK mechanism mentioned above: after

processing the message, the consumer needs to reply to the message queue service with the

corresponding ACK signal to confirm that the message has been consumed.

Still following the assumptions in the previous example, MQ delivers message 1 to node X,

but does not receive the corresponding ACK signal from node X within the specified time.

There are many possibilities at this point, for example:

 Message 1 was not processed: Node X did not receive the message due to a network

failure.

 Message 1 was not processed: Node X received the message, but due to a power failure,

it did not have time to save and process the message.

 Message 1 has been processed: Node X received and processed the message, but due to

BaiY Application Platform

 Technical White Paper

82

a power failure, it did not have time to return the corresponding ACK signal to the MQ

service.

 Message 1 has been processed: Node X received and processed the message, but due to

a network failure, the corresponding ACK signal cannot be transmitted to the MQ service.

And many more. It can be seen that after the message delivery timeout, the MQ service

cannot know whether the message has been consumed. To make matters worse, due to

the reasons mentioned above (the user can't wait too long), this timeout is usually set as

short as possible, which makes it more impossible for the MQ service to correctly

presume the actual situation.

At this time, in order to ensure that the message is not lost, MQ usually assumes that the

message is not processed and re-dispatches the message (for example, after timeout,

message 1 is re-dispatched to node Y). And this is bound to no longer guarantee that the

message is not duplicated, and vice versa.

 The message should not be unordered: In the above example, the so-called "message is not

out of order" means that the messages in MQ are to be consumed one by one in the order of

"1, 2, 3, 4, 5". To ensure strict ordering, MQ is required to wait for a message to be processed

(received ACK) before continuing to distribute the next message in the queue, which brings at

least the following problems:

 First of all, multiple messages in MQ cannot be consumed in parallel. For example, MQ

cannot dispatch messages 1, 2, and 3 to nodes X, Y, and Z simultaneously, which leaves

most consumer nodes in a hungry (idle) state. Even on the node where the message

processing is being performed (such as node X), a large number of computing cores such

as processor cores and SMT units are wasted.

 Secondly, in the process of processing a message, all subsequent messages can only be in

a waiting state. If a message fails to be delivered (timeout), it will block all subsequent

messages for a long time during its "timeout - retransmission" period, causing that they

cannot be processed in time.

It can be seen that ensuring strict orderly message delivery will greatly affect the overall

message processing performance of the system, increase hardware procurement and

maintenance costs, and also significantly damage the user experience.

It can be seen from the above discussion that at this stage, there is no MQ product that provides

reliable delivery of messages at reasonable cost. Under this premise, the current solution mainly relies

on App Server's own business logic (such as: idempotent operation, persistent state machine, etc.)

algorithm to overcome these problems.

BaiY Application Platform

 Technical White Paper

83

Conversely, no matter how "reliable" MQ product is used, the current App business logic also

needs to deal with and overcome the above-mentioned unreliable delivery of messages. Since MQ is

not reliable in its essence, and the App has overcome these unreliability, why bother to reduce the

performance by thousands or even tens of thousands of times to support the "distributed storage +

ACK" mechanism at the MQ layer at all?

Based on the above ideas, BYDMQ does not provide so-called (actually unachievable) "reliability"

guarantees like products such as RabbitMQ and RocketMQ. In contrast, BYDMQ adopts the “best effort

delivery” mode to ensure that messages are delivered as reliably as possible without compromising

performance.

As mentioned earlier, the App has overcome the occasional unreliability of messaging. Therefore,

such a design choice greatly improves the performance of the whole system, and does not actually

increase the development workload of the business logic.

Based on the above design concept, BYDMQ includes the following features:

 Like BYPSS, it is based on various high-quality cross-platform components in the BaiY

application platform, such as the network server component capable of supporting tens of

millions of concurrent connections on a single node; concurrent hash table containers that

support multi-core linear extensions, and more. These high-quality, high-performance

components make BYDMQ perform very well in terms of portability, scalability, high capacity,

and high concurrent processing.

 Like BYPSS, it has a mature message bulk packaging mechanism on both the client and server

side. Support automatic batch packaging of continuous messages, greatly improving network

utilization and message throughput.

 Like the BYPSS, the pipelining mechanism is supported: the client can continuously send the

next request without waiting for the response result of the current one, which significantly

reduces the request processing delay, improves the network throughput, and effectively

increases the network utilization.

 Each client (App Server) can register a dedicated MQ and keep it alive through a keep-alive

connection with heartbeat mechanism. The corresponding owner broker (BYDMQ node) also

pushes the incoming message to the client in real time through this keep-alive connection

(with the bulk packaging mechanisms).

 The client predicts the owner of an MQ through the consistent hash algorithm. When the

broker first receives a request for a specified MQ (e.g.: registration, message sending, etc.), it

will be elected as the owner of the MQ through the BYPSS service. If the election is successful,

the processing continues. Otherwise if the election fails, the client is redirected to the correct

BaiY Application Platform

 Technical White Paper

84

owner node.

At the same time, BYDMQ will track cluster changes (e.g. existing Broker offline, new Broker

launch, etc.) in real time through the BYPSS service and push these changes to each client

node instantly. This ensures that unless the BYDMQ cluster is undergoing drastic changes (a

large number of Broker nodes are online or offline), the accuracy of the owner prediction

through the consistent hash algorithm will be very high, so that there is basically no need to

take the redirection for most of the requests.

In addition, even if the consistent hash algorithm emits a wrong result, the actual owner of

the MQ will be automatically learned by the client node to its local quick lookup table,

ensuring that the next time a message is sent to the MQ, it can be directly delivered to the

correct broker.

BYDMQ delivery messages directly from the client to the corresponding broker which is the

owner of the specified MQ. This method avoids complicated routing and multiple relays of

messages in the server cluster, thereby reducing its network routing to the simplest way,

greatly improving the efficiency of message delivery, and effectively reducing the network

load.

Elect the owner node of the MQ through BYPSS provides the cluster with a consistency

guarantee of "every MQ is globally unique". At the same time, the BYPSS service is also

responsible for dispatching some control-type commands (such as node online and offline

notifications) between the various broker nodes, so that BYDMQ clusters can be better

coordinated and scheduled.

 All messages to be delivered are only stored in the memory of the corresponding MQ owner

node (the owner broker), avoiding a lot of useless overhead such as writing disk, replcation,

consensus voting, and the like.

 The sender can set its lifetime (TTL) and the maximum number of error retries for each

message. The resources it consumes can be precisely controlled based on the type and value

of the message. Requests that are short-lived or not important can be invalidated in time to

avoid continuing to consume resources at all points, and vice versa.

 Support for dispersed delivery: When the client node of the specified MQ is not online, or its

connection is disconnected for more than the specified duration, all pending messages in this

message queue will be randomly sent to any MQ that can still work normally.

The dispersed delivery solution expects that the clients (App Server) are also the BYPSS-based

nano-SOA architecture cluster. In this case, if an App Server node is offline due to

maintenance or hardware failure, all objects owned by the node will be released by the

BaiY Application Platform

 Technical White Paper

85

corresponding BYPSS manager.

At this time, the system can randomly disperse the messages sent to this node to other nodes

that are still working normally, and let the new reception node regain the owne rship of the

related object of the request through RegPort, and take over the original owner node that has

been offline to continue processing. This greatly reduces the associated request failure rate

when an application server node being offline, and optimizing the customer experience. At

the same time, the random dispersion also makes the objects owned by the offline node

evenly divided by other nodes still working in the cluster, which ensures the load balancing of

the whole cluster.

In summary, BYDMQ sacrifices the reliability of the message that cannot be guaranteed by a

certain degree, combined with message packing, pipelining, and direct delivery by the owner, greatly

improves the single point performance of the message queue service. At the same time, thanks to the

strong consistent, high-availability, and high-performance distributed cluster computing ability

introduced by BYPSS, it also has excellent linear scale-out capability. In addition, its flexible control of

each message, as well as the characteristics of dispersion delivery, ultimately provide users with an

ultra-high performance, high-quality distributed message queue product.

5.5 Distributed Full Text Search (FTS) Service

The Distributed Full Text Search Service (BYDFTS) is based on the famous Sphinx full-text search

engine and the BYPSS distributed coordination service. Provides a complete, consistent,

high-availability and high-performance distributed clustering solution for the full-text search and tag

matching functions. The main implementation details can refer to 5.4.3 Port Switch Service and other

relevant sections, not repeat them here.

In addition, BYDFTS also implemented the following common functions through UDF plug-ins and

other forms:

 Distributed cross-table (cross-index) association (JOIN) query: Added a highly efficient

distributed cross-index JOIN support to the Sphinx engine. Which makes up the defects that

all the mainstream full-text search engines (Solr, Elasticsearch, Xapian, Sphinx...) are currently

cannot support the distributed cross-table JOIN query.

This extension supports efficient LRU local caching and can access backend data storage (e.g.

SQLite, MySQL, MongoDB, Cassandra, etc.) via the standard DBC plug-in (see: 5.4 nSOA -

libapidbc).

This extension supports the following three distributed data processing schemes:

BaiY Application Platform

 Technical White Paper

86

 Shared instances: All distributed BYDFTS nodes share the same back-end storage

services (e.g. MySQL, MS SQL Server, PostgreSQL, MongoDB, Cassandra, etc.). This

architecture is simple and clear, and the high availability and horizontal scalability of the

back-end storage service can also be achieved by the deployment of NewSQL / NoSQL

cluster. Its downside is the need for additional deployment of back-end storage service

clusters, increasing the burden of implementation and maintenance.

 Mirror Copy: All distributed BYPDFTS nodes mirror each other with the same data,

usually used with local back-end storage such as SQLite. This scheme is suitable for

queries when the associative auxiliary table size is small.

 Data Shard: Shard data by the consistent hash algorithm. The data access operations are

mapped to the corresponding owner node according the hash value. This scheme

supports replication groups that duplicate each data slice into the corresponding node

group to provide high reliability and high availability.

 The Favor Rank algorithm for the Tag Collection (MVA attribute): This algorithm can compare

two sets of Tags and return their similarity according to the user specified complex weighted

matching rules. For example, each document label in the result set can be weightily matched

with the current user preference tag and the similarity is counted in the ranking algorithm.

 Timeness Rank algorithm for time and date fields: This algorithm can rate fields such as

timestamps in the specified rules and return their timeliness coefficients. The timeness factor

can also be used as a factor in the ranking algorithm, which affects the sort order of the

search results.

5.6 Secure Tunnel Service (BYST)

The BaiY Secure Tunnel Service (BYST, pronounced "best") provides users with an end-to-end

secure tunnel service that supports the following features:

1. Support PSK and PKI authentication: authentication can be performed using pre-shared key or

the public key algorithms.

2. Support dozens of strong encryption algorithms: support dozens of block encryption and

streaming encryption algorithms. For a list, please refer to 4.1 The Cryptographic Algorithm

Module - algorithm.

3. Seamlessly integrates with our self-developed EAL5+ level smart card hardware to provide a

very high security level of protection.

BaiY Application Platform

 Technical White Paper

87

4. Support for on-the-fly data compression: High-performance real-time data compression

based on lz4 algorithm, which can be enabled through configuration options.

5. Support message integrity check: Use the high performance hash algorithm to calculate the

checksum to ensure the reliability and integrity of the message (Both the checksum and the

compressed data are encrypted and then transmitted). This feature can be turned on with

configuration options.

6. Support anti-replay attack: the time window range of anti-replay attacks can be enabled and

set through configuration items.

7. Data obfuscation: Unlike existing solutions such as OpenVPN, SSL, IPSec, and SSH, this

tunneling protocol has no features to be observed. A third-party interceptor who does not

know the key can only see a random binary byte stream, and it is difficult to detect that the

communication party is using the tunneling protocol by any effective means.

Not only does it have no features, BYST can also act as a legal whitelisting protocol such as

http (BYST over http), ensuring that it works in extreme environments that block only based

on traffic restrictions even for unknown protocols.

At the same time, BYST also supports HTTP chunked transfer encoding. This only adds an

additional 3.5 Bytes overhead for each package (tens of KB to several MB). The data

expansion rate is less than 0.01%, which avoids the problem of data bloat caused by the

cumbersome HTTP header. Compared to other whitelisting protocols such as SSL / TLS, SSH,

h2 and WebSocket, the additional communication overhead of this solution is significantly

reduced. Therefore, it maintains a very high network utilization while achieving the whitelist

communication.

8. High efficiency: Thanks to the asynchronous IO components based on assembly optimization,

zero memory copy, and DMA + hardware interrupts (see: 3.2.1 High performance I/O

Framework), even on a limited hardware platform, BYST can meet the demanding

requirements of high performance and high concurrent services.

In addition, BYST significantly improves network utilization (high payload ratio) and network

throughput due to our advanced bulk packaged IO, patented distributed N:M dynamic

connection pool acceleration algorithm, and the high performance real-time data

compression algorithms.

At the same time, compared with various existing solutions, the BYST tunneling protocol,

which has been carefully simplified in terms of handshake (negotiation) and

acknowledgement, also resulting in significantly lower communication delays.

BaiY Application Platform

 Technical White Paper

88

9. High performance and high availability cluster: Supports high performance and high

availability multi-active IDC cluster deployment based on BYPSS (see: 5.4.3 Port Switch

Service (BYPSS)).

In addition, BYST also supports multi-path automatic inspection and automatic routing

switching. The overall availability of the service can be significantly improved by adding

alternate links, while it also supports features such as automatic traffic aggregation and load

balancing.

10. Line-level real-time compensation: Unique line-level real-time tracking and predictive

intelligent algorithms that track and compensate for packet loss and jitter of each line in

real-time.

BYST service is mainly used to establish secure and reliable data transmission channels in

wide-area or metropolitan area network environments such as Internet, satellite, microwave, SDH

(MSTP), and inter-area fiber-optic lines. The strong encryption and authentication algorithms ensure

data security, reliability and integrity, and the bandwidth costs can be reduced through data

compression. At the same time, it is also possible to protect its tunnel communication from being

intercepted, recognized and blocked by an obfuscation algorithm that is difficult to analyze.

In summary, BYST mainly brings the following technical advantages:

1. Ensure communication security: Provide a secure communication tunnel with strong

encryption, strong verification and anti-replay attack mechanisms.

2. Full bandwidth: Thanks to the unique IO automatic batch packaging, real -time data

compression, and our patented distributed N:M:N dynamic connection mapping acceleration

algorithm, BYST can fully fill the user bandwidth limit, significantly improving the site -to-Site

Tunnel communication performance. Actual measurement by a large number of users shows

that in the intra-city communication (MAN) environment, with only a single point of N:M

acceleration enabled, BYST can increase the bandwidth throughput by more than 6 times; In

a remote communication (WAN) environment, BYST's single-point N:M acceleration can

achieve a throughput performance improvement of up to 70 times. On this basis, distributed

N:M acceleration can linearly increase the aggregate throughput rate with the increase of

distributed acceleration nodes.

BaiY Application Platform

 Technical White Paper

89

3. Prevent false blocking: As mentioned above, in order to improve communication performance

and reduce handshake delay, BYST itself is designed as a completely non-characteristic

protocol. In addition, through data obfuscation mechanisms such as strong data encryption,

IO automatic batch packaging, real-time data compression, and our patented distributed

N:M:N dynamic connection mapping acceleration algorithm, all upper-layer protocols carried

by BYST will also lose their recognizable characteristics. In addition, the whitelist protocol

communication support of BYST over HTTP further guarantees its excellent firewall

passability.

4. Authentication agent: BYST can provide safe and reliable dual-end authentication access

through PSK, PKI and EAL5+ level secure smart card hardware technology. This eliminates the

need to implement complex algorithms such as CHAP, IKE, and LDAP to complete

authentication when interconnecting upper-layer applications.

BaiY Application Platform

 Technical White Paper

90

6. Interface, Media and Other Tools

This includes a cross-platform audio I/O framework (libaudioio), a cross-platform I18N GUI

framework (libmlgui), and etc.

6.1 Cross-platform Audio I/O library - libaudioio

Figure 1

BaiY Application Platform

 Technical White Paper

91

As illustrated in Figure 1, the libaudioio library employs a similar module structure with both

libutilitis and libcrypto. The I/O module at the very bottom is responsible for encapsulating all audio

I/O interface operations associated with OS, and providing a unified audio I/O interface to the upper

level.

The I/O module currently supports the following audio interfaces:

 Audio Session API (Win3264)

 WDM Kernel Stream (Win32)

 DirectSound (Win3264)

 Multi Media Extension (Win3264)

 Core Audio (Macintosh)

 Sound Manager (traditional Macintosh)

 Advanced Linux Sound Architecture (Linux)

 Audio Science HPI (Linux)

 Audio Library (un*x)

 Open Sound System (un*x)

 ASIO (platform independent)

 JACK (platform independent)

Provides the upper level with a unified interface used for asynchronous communications based on

the command pattern.

The filter module is established on the basis of the I/O module. It conforms to the data filter

framework defined in libutilitis, and supports using various filters to freely establish a filter chain

between data source and data sink. The filter module has two sub-layers: codec layer and effects layer.

Among all the objects defined in the codec layer, only data source (decode) and data sink (encode)

are included. It supports encoding and decoding of various formats, such as wav (including x -law, g.7xx,

gsm and other sub formats), caf, au, snd, voc, mpx (mp1, mp2 and mp3), mpc (Musepack), flac, and

ogg vorbis. For mpx and mpc, only decoding is supported considering legal issues.

It is worth noting the importance of au format. As a traditional audio format for Unix, au has a

large user base and is the only non-compression audio format that supports labelling sample length

information at the end of the file (just set the corresponding field in the file header to -1). This is a very

important characteristic for generating a temporary file and for stream I/O.

BaiY Application Platform

 Technical White Paper

92

We have defined various audio effect filters in the effects layer. Because currently most products

don’t have high audio processing requirements, we have implemented only the basic filters like

attenuator (volume control) and sample rate convertor.

The module located at the top of the libaudioio library is named as facility, the same as libutilitis

and libcrypto. It encapsulates the high level general functions associated with audio processing. We

have defined only a set of audio recording and audio playing tools, considering that currently most

software products do not have high audio processing requirements.

6.2 Cross-platform I18N GUI Framework - libmlgui

Unlike traditional system functions and various algorithms, the GUI’s implementation methods for

platforms differ from each other in a variety of ways (mechanism and model). The implementation

details are very complex. For common software development organizations, it requires huge efforts to

establish a complete and robust cross-platform GUI framework from scratch.

The libmlgui library has implemented a universal GUI framework with I18N support and various

functions, by utilizing the famous open source GUI framework wxWidgets (has over 24 years history)

and by co-working with libraries like libutilitis.

The libmlgui framework is implemented in four-layer architecture:

BaiY Application Platform

 Technical White Paper

93

Figure 2

BaiY Application Platform

 Technical White Paper

94

6.2.1 File System Extension

In this module, VFS and other mechanisms defined in libutilitis are extended to be the driver layer

within wxWidgets and wxFileSystem:

 Memory-based file system: Use the virtual registry (CConfig) component provided by libutilitis to

implement a memory-based virtual file system that supports directory structure and zero-copy

access.

 VFS-based file system: Employ the VFS framework defined in libutilitis to enable wxFileSystem to

support virtualizing one or more files into a single read-only file system. Because the VFS (in

libcrypto) that supports encryption and compression functions is also implemented based on the

VFS framework defined by libutilitis, this extension has simultaneously added the support for such

kind of VFS to wxFileSystem.

It is worth noting that VFS systems are categorized into two types: file based (virtualizes a certain

type of file into a file system) and encapsulation based (encapsulates real file systems like FTP into

objects that can satisfy VFS user interface). So this extension has simultaneously added the

capability for accessing VFS (based on FTP or HTTP) to wxFileSystem.

6.2.2 I18N Components Library

It is easy to implement a graphic controls library with multi-language support by utilizing the

language pack (uses hash index table) and the multi-language object class, as well as the various GUI

controls (e.g., buttons, menus, windows) within wxWidgets.

This section takes buttons (the most commonly used GUI control) for example, to explain how the

multi-language GUI controls are implemented.

BaiY Application Platform

 Technical White Paper

95

Figure 3

Figure 3 illustrates how the multi-language controls in liblmgui look like. In libutilitis, the common

base class CMLObj (for all multi-language UI controls) is defined along with the language pack. This

CMLObj class retains a handle of the language pack in the form of static member (the handle is a smart

pointer that supports reference counting and customized destroy strategy). Language resource ID used

by the current object is kept by a non-static integer member.

A multi-language graphic button control is derived from the standard button class (wxButton) and

the CMLObj class. We can set appropriate language, font and other information while each graphic

object is being initialized, by correctly overloading the virtual method DoSetLpkRecord.

This library also utilizes charset encoding conversion functionality provided by libutilitis and the

font mapping mechanism provided by wxWidgets, to present these language resources to users as

correctly as possible.

One thing to note is that we have intentionally ignored some necessary functions (e.g., the

Refresh mechanism required for changing language pack in real time), for the sake of easier description.

For complex controls like list and combo box, the language pack can also resolve them through

corresponding mechanisms (e.g., each record can correspond to multiple values simultaneously).

BaiY Application Platform

 Technical White Paper

96

Moreover, this module supports loading language pack from various wxFileSystem mentioned

above.

6.2.3 Quick Help Framework

Software designers have noticed that users always have limitless requirements for applications. In

addition to a rich set of functionalities, users also expect higher usability from the software. To address

this challenge, there is a need to implement a suite of universal quick help framework, in addition to

designing a user interface that is easy to understand, highly consistent and logic.

Figure 4

As shown in Figure 4, in an application with quick help system enabled, help information is

expanded to four types. In this four-level help system, the content of help will become more complete

and detailed as the help level increases. At the same time, the help system will require more screen

space and user attention as the help level increases.

In a traditional two-level help system, “tooltip” has advantages in requiring smaller screen space

and less user attention, though the information it can provide is also limited and cannot be steadily

BaiY Application Platform

 Technical White Paper

97

shown on the screen for users to read deeply. On the contrary, online manual has elaborate content

and explicit structure, but most users are uninterested in reading online help of a software product due

to its disadvantages (requiring more screen space and user attention).

The four-level help system provides a good balance between the above two aspects, by adding

“Quick Help” and “Expanded Help” mechanisms.

Quick Help

Figure 5

Users just need to simply point to any interested place (use the TAB key to switch the highlight),

then the associated help information will be displayed in real time (within a quick help area similar to

Figure 5). The quick help area is often located at the bottom or on both sides of the window. When

there is a need for more screen space, users can hide the quick help by using the button shown

on above example.

To improve expression capability, the quick help area supports standard HTML texts, and can

display commonly used graphic formats like ico, bmp, png, gif, jpg, pcx, and xpm. Furthermore, the

behaviour that happens after clicking a hyperlink is customizable by software designers (e.g., either to

open a specific page within the online help or to load an application).

To keep portability and to save resources like CPU and memory, the HTML window within the

quick help utilizes the controls within wxWidgets and functionalities offered by libutilitis, instead of

using a third-party WebView component like Internet Explorer.

BaiY Application Platform

 Technical White Paper

98

Extended Help

Figure 6

Extensive practices have proved that the quick help mechanism can satisfy user requirements in

most cases, but sometimes users may need a more comfortable reading environment (e.g., a larger

reading area, adjustable font size). The extended quick help mechanism was designed to address these

requirements. As in the above example, users can continue reading in a more comfortable pop-up

window by simply clicking on the button (Figure 6).

The quick help framework can automatically acquire correct help information from controls and

language packs and display them, and simultaneously supports loading specified HTML page or bitmap

directly from wxFileSystem.

6.2.4 Universal Graphic Controls

We have defined some commonly used graphic controls here, including configurations editor,

busy-waiting dialog box, and etc. Here we introduce the configurations editor CConfig in more details.

BaiY Application Platform

 Technical White Paper

99

Figure 7

As shown in Figure 7, this control has its own quick help area, which can provide users with instant

help information such as usage instructions about the current option or sub-key.

BaiY Application Platform

 Technical White Paper

100

Figure 8

BaiY Application Platform

 Technical White Paper

101

Figure 9

Figure 8 and Figure 9 show the value editing and search functions provided by this control.

The following questions depend on what kind of virtual registry is passed to the editor by the

software designer or the user: what sub-key structure will appear in the configurations editor control;

what specific values are contained in the subkeys; and what quick help information correspond to

these subkeys.

In the descriptions about libutilitis, we mentioned a component that can simulate registry service

in non-Windows platforms. This cross-platform tool can provide better performance than Windows

registry, and can be stored in almost any place (e.g., VFS, memory, network media, or embedded into

executable modules). So the configurations editor control described here is intrinsically a virtual

registry (CConfig) editor. It can be used for browsing and editing any tree view structure and

configurations within specified virtual registry object. Also, it can display the quick help information

corresponding to the current configuration instantly. The flexibility of the design enables the

configurations editor control to adapt to various complex applications.

In addition to the Advanced Configurations dialog box, the universal control module should also

contain other universal controls like busy-waiting and language-selection dialog boxes, which have very

BaiY Application Platform

 Technical White Paper

102

simple meaning and will not be described here.

6.3 CConfig Language Binding Component

The CConfig within libutilitis is a tree data structure used for storing complex information. It

supports a wide variety of data types. Cross-platform, high efficiency, internalization, and flexible

interaction are some of its characteristics.

CConfig has been widely used in configuration management and in situations when there is a need

for passing information among API, WebAPI and module interfaces. For the purpose of facilitating

second development by users or by any third-party, we have implemented language binding which is

specifically designed for mainstream languages and environments, including C/C++, Java, C#, F#,

VB.NET, PHP, and JavaScript.

The CConfig Language Binding component offers the following functions in object-oriented style:

 Save and Open: open and save CConfig data in JSON, CSV, XML, INI, and binary (ISXF) formats.

(JavaScript version supports CSV, INI and JSON formats only)

 Value access: read, write, replace, create and delete operations with values; supports type

identification, existence checks, and other management options.

 Sub-key access: create, delete, detach, import, export, replace, and insert operations with

sub-keys; supports existence checks and other management options.

 Search and traversal: traversal of subkeys and their values; search based on wildcard and

regular expressions.

 Status information: whether the current object is null or has been changed; to acquire the

number of sub-keys and values; equality comparisons and etc.

 Multi-thread safety: all operations on the CConfig component are thread safe; supports

exclusive access by explicit locking (Lock/TryLock/Unlock) with time-out timer (except for

JavaScript version which does not require these); CConfig (except for JavaScript version)

employs a spinlock mechanism with limited spin times to improve performance.

For more information on CConfig Language Binding, see the CConfig Reference Guide.

6.4 JavaScript Tools Library - libbaiy

The libbaiy library was designed with the purpose of facilitating the communications and

BaiY Application Platform

 Technical White Paper

103

interactions among browser-end codes and BaiY platform based server-end codes in applications with

B/S architecture. It comprises two parts: function library and interface library.

6.4.1 Functions Library

The function library focuses on functional operations associated with calculation and data

encoding/decoding, including:

 Cryptographic algorithms, such as SHA1 hash algorithm, HMAC algorithm, and algorithms for

encoding and decoding between HEX and BLOB.

 Tools for parsing and generating CSV data that are fully compliant with RFC 4180;

customizable separator, line break, and quote character; support quote character escape

within a quoted field.

 The CConfig component used for accessing CConfig Schema in a convenient and efficient way

(see 6.3 CConfig Language Binding Component for more details). CConfig can access sub-keys

and values at an efficiency of O(1) or O(log(N)), which depends on how the JavaScript engine

has implemented associated containers.

 The language pack component can load the language packs that are defined and

implemented within libutilitis. In addition to access every record defined in the language pack,

it also can access language name, compatible code page and ISO standard name, charset and

charset encoding, and others meta information like original encoding. This component can

access all the above fields at an efficiency of O(1) or O(log(N)), which depends on how the

JavaScript engine has implemented associated containers.

 I18N string comparison and sorting algorithms supporting customized sorting rules (e.g.,

Chinese -> Hanyu Pinyin, Chinese -> Taiwan Pinyin, Japanese -> Rome Pinyin); table

(two-dimensional array) sorting algorithms supporting composite multi-column ascending or

descending order; I18N string processing tool such as rule compiler which supports strict

matching, wildcard matching and regular expression matching.

 Keyword tree container. The keyword tree is a common “key -> value” data structure

designed to implement efficient prefix matching. The JavaScript version interface

implemented within libbaiy is compatible with the C++ version within libutilitis. However, its

function is only a minimal subset of the C++ version.

 Message dispatching component. The message dispatcher (API Nexus) can dispatch different

types of messages to their corresponding processor. If the processor of specified type is not

registered yet, the dispatcher will store messages in a temporary message queue, and will

dispatch the messages in FIFO order (to solve inter-module dependency) once the message

processor is registered.

BaiY Application Platform

 Technical White Paper

104

 Task queue component designed for managing and executing a series of specified tasks in

order. The order for executing these tasks can be pre-defined, and is adjustable while tasks

are being executed. After all tasks are executed, or when unexpected exceptions occur, the

finally callback will be triggered. This component is mainly used for solving callback

management issues (callback hell) caused by asynchronous mode in JavaScript environment.

 Mobile platform tools designed for mobile devices such as iPad, iPhone and Android devices.

For example, a tool for determining mobile platform runtime, and the drag and drop adapter

for simulating Touch events as mouse events.

 Other miscellaneous functions, such as the XMLHttpRequest (XHR) object factory that is

independent of web browser; dynamic load (synchronous or asynchronous) and cross-site

load of JavaScript; dynamic load and unload of CSS style sheet; set or change background

graphic for specified DOM object in stretch style; test current browser platform; test

long-polling compatibility of the current browser; cross-browser mouse event Hook;

cross-iframe message passing; byte swap operation with 16-bit and 32-bit integer; http

header parser, and etc.

6.4.2 User Interface Library

It offers ExtJS-based UI controls and associated framework. All controls support I18N and themes.

This UI library has implemented the following features:

 Extended quick help framework. A simplified browser-end 6.2.3 Quick Help Framework.

 A simplified browser-end configurations editor. See the following sections for more details.

 Miscellaneous functions such as: a patch for adding L10N sorting capability to ExtJS table; the

load mask control with shadow effect and supporting delayed popup and hide.

BaiY Application Platform

 Technical White Paper

105

Figure 10

Figure 10 shows the CConfig configurations editor of JavaScript version. It has similar interface and

functions with the universal configurations editor described in 6.2.4 Universal Graphic Controls.

BaiY Application Platform

 Technical White Paper

106

7. Error Processing Mechanism

The application platform is at the bottom of the whole application, in which location things turn to

be error-prone. On the other hand, processing a specific error is usually decided by upper-layer

business logic.

The exceptions mechanism in C++ is ideal for use in this case for the following reasons: the use of

exceptions eliminates the need to judge if each operation is successful by returned value and the public

variable, as well as the pains and errors caused by such judgement; it also eliminates the

embarrassment of returning from the error point to the position which allows the error to be

processed step by step; the exceptions mechanism is helpful for implementing a more structured error

processing method.

From performance perspective, the exceptions mechanism in C++ is very suitable for error

processing for the following reasons:

1. The exceptions mechanism is enabled only when an error occurs. So it will not affect

performance in normal conditions. On the contrary, enabling this mechanism may increase

performance of the program, because it eliminates the need to judge returned value and/or

to check public error variable for all operations one by one.

2. Even if an exception occurs, only exception catching and stack unwinding operations involve

the O(N) algorithm which is closely associated with the current function call stack. However,

the algorithm used for traditional mechanism (returning to the error processing position step

by step) is comparable to O(N) in terms of complexity.

Based on the above reasons, we have defined a set of exception class structure for the application

platform.

BaiY Application Platform

 Technical White Paper

107

Figure 11

Figure 11 shows only part of the exception class structure, but it is enough to illustrate the design

ideas of the exceptions processing mechanism. It is a simple four-level structure. Though the above

figure shows only three among the four levels, we can imagine that types like "fileExp" and "socketExp"

will be derived from "ioExp", and types like "mutexExp" and "semExp" will be derived from “syncExp”.

Each exception object carries three types of information: its location within the whole exception

class structure (i.e., its type information); an error code; and detailed description about this error.

Practically, a Reason Code will be added for some complex exception objects. Then the upper-layer

exceptions processor can implement error processing strategy for different granularities accordingly

(e.g., either to process all cryptography associated errors or to process hash verification errors only).

For more discussions on the usage of exceptions, see section Exceptions in my document C++

Coding Guidelines. For the details of how a compiler implement the C++ exception mechanism, and its

performance analysis, please refer to "Inside C ++ exception" section (Chinese only).

Now we have finished a quick overview of the BaiY Application Platform. For more information,

refer to the user manual and developer’s guide for each component.

http://baiy.cn/doc/cpp/index.htm#代码风格与版式_异常
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/inside_exception.htm

	Introduction
	A Quick Brief
	High-performance IO server components
	Consistent HAC and HPC across multiple active IDC
	Distributed coordination service

	Efficient high-strength cryptographic components
	Data query engine
	More...

	Revision History
	Contents
	1. Overview of the Application Platform
	2. Architecture of the Platform
	3. Cross-platform Infrastructure - libutilitis
	3.1 The Base Module - base
	3.1.1 Bottom Layer of the Base Module
	3.1.2 Interface Layer of the Base Module

	3.2 System Utilities Module－sysutil
	3.2.1 High performance I/O Framework

	3.3 Common Facilities Module - facility
	3.3.1 Web Framework
	Synchronous I/O + Thread Pool Architecture
	High Performance Asynchronous Web Framework
	Keep-Alive and HTTP Pipelining Mode

	3.3.2 Typical Web Use Cases
	Reverse Proxy
	Application Service
	Database and memcached Services
	Scalability of the Three-tier architecture

	3.3.3 FastCGI? SCGI? HTTP!

	4. Cross-platform Cryptographic Library - libcrypto
	4.1 The Cryptographic Algorithm Module - algorithm
	4.1.1 Block Cipher Algorithms
	4.1.2 Stream Cipher Algorithms
	4.1.3 Public Key Algorithms
	4.1.4 Hash Algorithms
	4.1.5 Message Authentication Algorithms
	4.1.6 Data Compression Algorithms
	4.1.7 Data Encode/Decode Algorithms
	4.1.8 Random Number Generator Algorithm

	4.2 The Common Facilities Module - facility

	5. Data Processing Tools
	5.1 Report Generation Library - libreport
	5.2 ODBC Encapsulation Library - libodbc_cpp
	5.3 SQLite Encapsulation Library - libsqlite_cpp
	5.4 nSOA - libapidbc
	5.4.1 SOA vs. AIO
	5.4.2 nSOA Architecture
	5.4.3 Port Switch Service (BYPSS)
	Reliability Under Extreme Conditions
	BYPSS Characteristics
	HAC Manager Utility
	BYPSS based High performance cluster

	5.4.4 Distributed Message Queue Service (BYDMQ)

	5.5 Distributed Full Text Search (FTS) Service
	5.6 Secure Tunnel Service (BYST)

	6. Interface, Media and Other Tools
	6.1 Cross-platform Audio I/O library - libaudioio
	6.2 Cross-platform I18N GUI Framework - libmlgui
	6.2.1 File System Extension
	6.2.2 I18N Components Library
	6.2.3 Quick Help Framework
	Quick Help
	Extended Help

	6.2.4 Universal Graphic Controls

	6.3 CConfig Language Binding Component
	6.4 JavaScript Tools Library - libbaiy
	6.4.1 Functions Library
	6.4.2 User Interface Library

	7. Error Processing Mechanism

