

BaiY Application Platform

Technical White Paper

Version: 2.31

http://baiy.cn

Copyright © 2001-2018 BaiYang. All rights reserved.

http://baiy.cn/

BaiY Application Platform

 Technical White Paper

I

Introduction

It has been 15 years since the publication of the first edition of BaiY Application Platform. During

the years, I have written more than one million lines of codes for the platform using Assembly language

and C/C++ languages. The most fundamental and important part of the platform, the libutilitis library,

is wholly implemented by myself. In addition to the Windows platform that I had already been familiar

with, I have gradually become familiar with and become fond of some other operating systems like

Linux, FreeBSD/NetBSD/OpenBSD and OpenSolaris, during the process of encapsulating a number of

cross-platform* functions into libutilitis.

My main approach for implementing the other libraries within the platform is to design a set of

interfaces and frameworks on the basis of the libutilitis library. The specific features, such as

cryptographic and compression algorithms, the audio encoder/decoder, and cross platform UI

components are implemented using stable third-party codes that are freely available. After taking into

account third-party open source code, the application platform contains more than five million lines of

code.

A variety of products that are built upon the application platform have been widely deployed in

different production environments, such as China CIB, China National Petroleum Corp., Sinosafe

Insurance, taobao.com, yiguo.com, Yantai Wanhua Group, SOCIETE GENERALE, Delphi, United Airlines,

GE, Bertelsmann, Accenture, China Everbright Bank, One Foundation, China Soong Ching Ling

Foundation, and China Unicom. The wide deployment in real production environments not only

provides a reliable and platform-independent infrastructure for the high-level applications, but also has

verified the reliability, stability, portability and efficiency of the application platform.

Copyright of the Application Platform belongs to BaiYang, wherein a number of technologies are

BaiY Application Platform

 Technical White Paper

II

subject to a number of national and international patents protections.

The application platform currently supports the following operating systems:

 The full range of Windows operating systems including Win98/ME,
WinNT4/2000/XP/2k3/Vis ta/2k8/Win7/2k8r2/Win8/8.1/2012/2012r2, etc.

 Linux, FreeBSD, NetBSD, IBM, AIX, HP-UX, Solaris, MAC OS X, and a variety of Un*x/POSIX systems
 vxWorks, QNX, SMX, DOS, WinCE (Windows Mobile), NanoGUI, eCos, RTEMS, Android, iOS and other embedded

systems.

The currently supported hardware platforms include x86/x64, ARM, IA64, MIPS, POWER, SPARC and etc.

A Quick Brief

As previously described, BaiY Application Platform contains millions of lines of assembly, C / C + +

code and thousands of mature general-purpose components. It has been tested in the real production

environment of numerous Fortune 500 companies. It has been used in multiple high-load

telecommunications, Internet and distributed computing environments for more than a decade.

Thousands of mature and reliable high-quality functional components can greatly enhance the

quality of software products in terms of performance, functionality, and stability. It also brought

unimaginable convenience for the development of the product. For example:

High -performance IO server components

The Application Platform uses assembly and asynchronous IO to optimize the network service

components. These components enable high performance network services through the memory

zero-copy and asynchronous IO mechanisms via DMA + hardware interrupts. On an entry-level 1U PC

Server (with dual-socket Intel Xeon 56xx) manufactured in 2011 (at that time, the price of the machine

was less than 20,000 CNY), a single node can permit tens of millions of TCP / HTTP concurrent

connections. Correspondingly, with the same machine, a general server development by Java or .NET

can only support up to 3000 to 5000 concurrent connections, PHP is even lower (See: 3.2.1 High

performance I/O Framework, 3.3.1 Web Framework, and 3.3.2 Typical Web Use Cases).

Consiste nt HAC and HPC across multiple active IDC

Distributed high availability and high performance cluster with strong consistency assurance (anti

split-brain): Thanks for the patented nano-SOA large-scale distributed architecture. We could maintain

a high cohesion, low coupling design under the premise of keeping the single node performance to far

beyond the traditional SOA architecture, while simplifying the cluster deployment, and improve the

BaiY Application Platform

 Technical White Paper

III

cluster maintainability (See: 5.4 nSOA - libapidbc, 5.4.1 SOA vs. AIO, and 5.4.2 nSOA Architecture).

BaiY Port Switch Service (BYPSS): BYPSS is designed for providing a high available, strongly

consistent and high performance distributed coordination and message dispatching service based on

the quorum algorithm. It can be used to provide services such as fault detection, service election,

service discovery, distributed lock, and other distributed coordination functionalities, it also integrates

a message routing service.

Thanks for our patented algorithm, we eliminate the network broadcast, disk IO and other major

costs within the traditional Paxos / Raft algorithms. We have also done a lot of other optimizations,

such as: support for batch mode, use the concurrent hash table and high performance IO component.

These optimizations allow BYPSS to support ultra-large-scale computing clusters consist with hundreds

of thousands nodes and tens of billions ports in a limited (both for throughput and latency) cross-IDC

network environment (See: 5.4.3 Port Switch Service).

Scaling out nodes across multiple active IDC and keeping strong consistency guarantee is the key

technology of modern high-performance and high-availability cluster, which is also recognized as the

main difficulty in the industry. As examples: September 4, 2018, the cooling system failure of a

Microsoft data center in South Central US caused Office, Active Directory, Visual Studio and other

services to be offline for nearly 10 hours; August 20, 2015 Google GCE service interrupted for 12 hours

and permanently lost part of data; May 27, 2015 and July 22, 2016 Alipay interrupted for several hours;

As well as the July 22, 2013 WeChat service interruption for several hours, and etc. These major

accidents are due to product not implement the multiple active IDC architecture correctly, so a single

IDC failure led to full service off-line.

We have over 10 years of experience in the distributed computing field. We hold the related

distributed architecture and algorithms which protected by a number of national and international

patents. Thanks to these leading distributed clustering algorithms and architectures, we can deploy

multiple active IDC cluster with strong consistent, high availability, and high-performance guarantee

easily. We have been implemented the truly multiple active IDC cluster on full range of our products,

providing our customers with unparalleled data reliability and service availability assurance.

BaiY Application Platform

 Technical White Paper

IV

Distributed coordination service

Figure 1

Distributed coordination services provide functions such as service discovery, service election,

fault detection, failover, failback, distributed lock, task scheduling, message routing and message

dispatching.

The distributed coordination service is the brain of a distributed cluster that is responsible for

coordinating all the server nodes in the cluster. Make distributed clusters into an organic whole that

works effectively and consistently, making it a linear scalable high performance (HPC) and high

availability (HAC) distributed clustering system.

BaiY Application Platform

 Technical White Paper

V

Figure 2

The traditional Paxos / Raft distributed coordination algorithm initiates voting for each request,

generating at least three broadcasts (b1-b3) and multiple disk IO. Making it highly demanding on

network throughput and communication latency, and cannot be deployed across multiple data centers.

Our patent algorithm completely eliminated these overheads. Thus greatly reducing the network

load, significantly improve the overall efficiency. And makes it easy to deploy clusters across multiple

data centers.

BaiY Application Platform

 Technical White Paper

VI

Figure 3

Based on our unique distributed coordination technology, the high performance, strong

consistency cluster across multiple data centers can be implemented easily. Fault detection and failover

can be done within a second. The system is still available even if the entire data center is offline. We

also providing a strong consistency guarantee: even if there is a network partition, it will not appear

split brain and other data inconsistencies. For example:

BaiY Application Platform

 Technical White Paper

VII

Figure 4

In the traditional dual fault tolerance scheme, the slave node automatically promote itself as the

master node after losing the heartbeat signal and continues to provide services to achieve high

availability. In this case, split brain problem occurs when both the master and slave nodes are normal,

but the heartbeat connection is accidentally disconnected (network partition). As shown in Figure 4: At

this time, node A and B both think that the other party is offline. As a result, both nodes upgrade

themselves to the master node and provide the same service, respectively. This will result in

inconsistent data that is difficult to recover.

Our BYPSS service provides the same level of consistency as the traditional Paxos / Raft distributed

algorithm, fundamentally eliminates the occurrence of inconsistencies such as split brain.

Similarly: ICBC, Alipay and other services are also have its own remote disaster recovery solutions

(Alipay: Hangzhou ŕ Shenzhen, ICBC: Shanghai ŕ Beijing). However, in their remote disaster

recovery schemes, there is no paxos and other distributed coordination algorithms between the two

data centers, so strong consistency cannot be achieved.

For example, a transfer transaction that has been successfully completed at Alipay may take

several minutes or even hours to be synchronized from the Hangzhou main IDC to the disaster recovery

center in Shenzhen. When the Hangzhou main data center offline, all of these non-synchronized

BaiY Application Platform

 Technical White Paper

VIII

transactions are lost if they switch to the disaster recovery center, leads a large number of

inconsistencies. Therefore, ICBC, Alipay and other institutions would rather stop the service for hours

or even longer, and would not be willing to switch to the disaster recovery center in the major

accidents of the main IDC. Operators will consider turning their business into a disaster recovery center

only after a devastating accident such as a fire in the main data center.

Therefore, the remote disaster recovery schemes and our strong consistency, high availability,

anti-split brain multi-IDC solution is essentially different.

Due to the elimination of a large number of broadcast and distributed disk IO and other high-cost

operation brought by the Paxos / Raft algorithm. Making BYPSS distributed coordination component

also provides more excellent features in addition to the above advantages:

Bulk operation: Allows each network packet to contain a large number of distributed coordination

requests at the same time. Network utilization greatly improved, from the previous less than 5% to

more than 99%. Similar to the difference between a flight only can transport one passenger each time,

and another one can transport full of passengers. In the actual test, in a single Gigabit network card,

BYPSS can achieve 4 million requests per second performance. In the dual-port 10 Gigabit network card

(currently the mainstream data center configuration), the throughput of 80 million requests per second

can be reached. There is a huge improvement compared to the Paxos / Raft cluster which performance

is usually less than 200 requests per second (restricted by its large number of disk IO and network

broadcast).

Large capacity: usually every 10GB of memory can support at least 100 million ports. In a 1U-size

entry-level PC Server with 64 DIMM slots (8TB), it can support at least 80 billion objects at the same

time. In a 32U large PC server (96TB), it can support about 1 trillion distributed coordinating objects. In

contrast, traditional Paxos / Raft algorithms can only effectively manage and schedule hundreds of

thousands of objects due to their limitations.

In summary, our patented distributed coordination algorithm providing strong consistency and

high availability assurance at the same level as the traditional Paxos / Raft algorithm. At the same time,

it also greatly reduces the system's dependence on the network and disk IO, and significantly improves

the overall system performance and capacity. This is a significant improvement in the high availability

(HAC) and high performance (HPC), large-scale, strongly consistent distributed clusters.

For a further description of the BYPSS service, see: 5.4.3 Port Switch Service.

Efficient high -strength cryptographic components

This includes basic functions such as public-key algorithms, symmetric encryption algorithms, data

encoding and decoding, hash and message authentication algorithms, data compression algorithms,

BaiY Application Platform

 Technical White Paper

IX

and etc (See: 4. Cross-platform Cryptographic Library - libcrypto, and 4.1 The Cryptographic Algorithm

Module - algorithm). In addition, the application platform also provides a number of highly abstract

advanced components, such as:

The Virtual File System (VFS) support data encryption and compression on-the-fly. VFS supports

dozens of strong encryption algorithms, including AES (128/256), TwoFish, etc., optimized using AES-NI,

SSE4 and other assembly instruction set, with high efficiency. We use this component to provide

on-the-fly data compression and strong encryption protection for the whole database and

configuration categories in our products like BlueWhale, WhiteDolphin, ZhiYeJing.com and so on. It also

includes strong cryptographic communication protection components based on Public Key

Infrastructure (PKI) and etc. (See: 4.2 The Common Facilities Module - facility)

In recent years, security issues frequently occur. Well-known enterprises such as Amazon,

Wal-Mart, Yahoo, Linkedin, Sony, JP Morgan Chase, UPS, eBay, dj.com, Alipay, ctrip.com, 12306,

Netease, CSDN, China Life Insurance, as well as major hotel groups (such as HOME INNS, HANTING

INNS, Jinjiang Hotels, InterContinental, Sheraton, Marriott, etc.) are frequently reported a large

number of users information disclosure and others serious security incidents, security protection

demand immediate attention.

All of our databases (the entire dataset) and configuration data are stored in our self-developed

VFS which supports on-the-fly data compression and strong encryption, provides comprehensive

protection for our customers.

Strong encryption algorithms based on industry standards ensure that even if a supercomputer

with one trillion trillions of key cracking attempts per second is made in the future, it will still take an

average of 540 billion years to crack a key.

Data query engine

Application platform also includes a query engine. Its ability is better than SQL language. Having

own query engine gives us the flexibility to switch between RDBMSs such as MySQL, MS SQL Server,

Oracle, DB2, SQLite, and NoSQL databases like MongoDB and Cassandra. In addition to making

applications database-independent, the query engine also provides a variety of advanced

characteristics that are not supported by SQL language, such as ARE (Advanced Regular Expressions)

query with support for Unicode charset, join query with support for nested tables, mixed query of

business data and configuration data, virtual field query, and other customized queries.

The query engine was implemented using C/C++, and its hotspot codes were optimized using

assembly language for mainstream hardware platforms. 13 millions times of evaluation of expressions

per second can be achieved on a ThinkPad W510 notebook (having 4 cores and 8 threads @1.6GHz)

produced in 2010, using single core and single thread only (See: 3.3 Common Facilities Module - facility,

BaiY Application Platform

 Technical White Paper

X

and 5.4 nSOA - libapidbc).

More...

The above only refers to a few highlights within the thousands of components in BaiY Application

Platform. A more complete description is given below.

BaiY Application Platform

 Technical White Paper

XI

Revision History

Version Date Description Changed by Reviewed by

1.0 2007-07-21 First edition migrated from the old introduction

document

Bai Yang

1.1 2007-08-09 Updated document structure (changed section

6.3.3 to section 6.4) and corrected minor

wording errors

Bai Yang

1.2 2008-01-04 Added description about Web application

extensions

Bai Yang

1.3 2008-03-19 Added support for bz2 algorithm Bai Yang

1.4 2009-12-02 Updated AIO framework and added support for

SCGI

Bai Yang

1.5 2010-04-27 Restructured the document; added support for

HTTP

Bai Yang

1.6 2010-06-13 Added Web framework comparison table Bai Yang

1.7 2010-07-06 Added description about HTTP Pipelining Bai Yang

1.8 2010-08-25 Added new components such as LRU Cache,

according to recent adjustment to the low-level

library

Bai Yang

1.9 2010-08-27 Added description about a typical working

model of Web application nodes

Bai Yang

1.10 2010-12-10 Added support for /dev/poll and pollset to the

AIO framework

Bai Yang

1.11 2011-06-07 Annual update; added description about the

development kit for the CConfig component

Bai Yang

1.12 2012-03-15 Annual update; added description about

components such as variant data type

Bai Yang

1.13 2012-04-12 Added LZ4 data compression algorithm Bai Yang

2.0 2012-04-17 Restructured the document; moved description

about the cross-platform GUI framework and the

cross-platform audio processing library to

chapter 6. Interface, Media and Other Tools;

added chapter 5. Data Processing Tools

Bai Yang

2.1 2012-04-19 Added new sections such as 6.3 CConfig

Language Binding Component and 6.4 JavaScript

Tools Library - libbaiy

Bai Yang

2.2 2012-05-07 Added description about generic query

conditions and QLI (Query Language Interpreter)

Bai Yang

2.3 2012-05-19 Added description about Search Helper Bai Yang

2.4 2012-06-09 Added JavaScript Keyword Tree container into Bai Yang

BaiY Application Platform

 Technical White Paper

XII

Version Date Description Changed by Reviewed by

libbaiy

2.5 2012-12-02 Updated figures and page layout Bai Yang

2.6 2013-01-16 Annual update; corrected an invalid reference Bai Yang

2.7 2013-03-11 Updated description about atomic and Memory

Barrier

Bai Yang

2.8 2013-03-16 Added support for SHA-3 Bai Yang Huasong Liu

2.9 2013-05-22 Corrected a typo Bai Yang

2.10 2014-01-12 Annual update; added the cross-platform

mechanism used for tracing function call stack

Bai Yang

2.11 2014-02-14 Added new components (e.g. Message

Dispatcher) to libbaiy.js

Bai Yang

2.12 2014-06-07 Added the Task Queue component to libbaiy.js Bai Yang

2.13 2015-02-07 Added description about the libapidbc library Bai Yang

2.14 2015-03-23 Added further discussions about distributed

caching, NoSQL and NewSQL into the section

Database and memcached Services

Bai Yang

2.15 2015-05-06 Rewording; corrected some typos; updated

some data

Bai Yang

2.16 2015-05-30 Small updates Bai Yang

2.17 2015-07-24 Updated some sections Bai Yang

2.18 2015-11-04 Small updates Bai Yang

2.19 2015-12-21 Updated some data Bai Yang

2.20 2016-1-22 Small updates Bai Yang

2.21 2016-4-13 Updated some sections Bai Yang

2.22 2016-7-15 Updated some data Bai Yang

2.23 2016-10-04 Add support for CRC32-C, ChaCha, and BLAKE2

algorithms

Bai Yang

2.24 2016-12-06 Add άA Quick Briefέ section Bai Yang

2.25 2016-12-16 Add άBYPSS based High performance clusterέ

section

Bai Yang

2.26 2017-04-03 Added description about the diff function of the

CConfig component

Bai Yang

2.27 2017-08-06 Added άDistributed coordination serviceέ section Bai Yang

2.28 2017-10-07 Added άDistributed FTS Serviceέ section Bai Yang

2.29 2018-01-13 Small updates Bai Yang

2.30 2018-03-26 /ƘŀƴƎŜ Ϧ˃{h!Ϧ ǘƻ Ϧƴŀƴƻ-SOA" to avoid

confusion with "micro-SOA"

Bai Yang

2.31 2018-05-22 Add support for ARIA, Kalyna, Simon, Speck,

SM4, ThreeFish, SipHash, Poly1305, SM3

algorithms

Bai Yang

BaiY Application Platform

 Technical White Paper

XIII

Contents

INTRODUCTION .. I

A QUICK BRIEF ..II

High-performance IO server components ..II

Consistent HAC and HPC across multiple active IDC ...II

Efficient high-strength cryptographic components ... VIII

Data query engine ..IX

More..X

REVISION HISTORY.. XI

CONTENTS ...XIII

1. OVERVIEW OF THE APPLICATION PLATFORM..1

2. ARCHITECTURE OF THE PLATFORM ...2

3. CROSS-PLATFORM INFRASTRUCTURE - L IBUTILITIS ...4

3.1 THE BASE MODULE - BASE...5

3.1.1 Bottom Layer of the Base Module..5

3.1.2 Interface Layer of the Base Module ...6

3.2 SYSTEM UTILITIES MODULĖ SYSUTIL .. 10

3.2.1 High performance I/O Framework .. 14

3.3 COMMON FACILITIES MODULE - FACILITY .. 16

3.3.1 Web Framework ... 24

3.3.2 Typical Web Use Cases .. 30

3.3.3 FastCGI? SCGI? HTTP! .. 41

4. CROSS-PLATFORM CRYPTOGRAPHIC LIBRARY - L IBCRYPTO ...42

4.1 THE CRYPTOGRAPHIC ALGORITHM MODULE - ALGORITHM... 42

4.1.1 Block Cipher Algorithms.. 43

4.1.2 Stream Cipher Algorithms... 45

4.1.3 Public Key Algorithms .. 45

4.1.4 Hash Algorithms ... 46

4.1.5 Message Authentication Algorithms... 46

4.1.6 Data Compression Algorithms ..47

4.1.7 Data Encode/Decode Algorithms ...47

4.1.8 Random Number Generator Algorithm...47

4.2 THE COMMON FACILITIES MODULE - FACILITY ..47

5. DATA PROCESSING TOOLS ..49

BaiY Application Platform

 Technical White Paper

XIV

5.1 REPORT GENERATION LIBRARY - LIBREPORT ... 49

5.2 ODBC ENCAPSULATION LIBRARY - LIBODBC_CPP... 49

5.3 SQLITE ENCAPSULATION LIBRARY - LIBSQLITE_CPP ...51

5.4 µSOA - LIBAPIDBC...52

5.4.1 SOA vs. AIO .. 54

5.4.2 nSOA Architecture...56

5.4.3 Port Switch Service..57

5.5 DISTRIBUTED FULL TEXT SEARCH (FTS) SERVICE...78

6. INTERFACE, MEDIA AND OTHER TOOLS ..80

6.1 CROSS-PLATFORM AUDIO I/O LIBRARY - LIBAUDIOIO.. 80

6.2 CROSS-PLATFORM I18N GUI FRAMEWORK - LIBMLGUI ..82

6.2.1 File System Extension .. 84

6.2.2 I18N Components Library ... 84

6.2.3 Quick Help Framework .. 86

6.2.4 Universal Graphic Controls ... 88

6.3 CCONFIG LANGUAGE BINDING COMPONENT..92

6.4 JAVASCRIPT TOOLS LIBRARY - LIBBAIY ...92

6.4.1 Functions Library .. 93

6.4.2 User Interface Library .. 94

7. ERROR PROCESSING MECHANISM ...96

BaiY Application Platform

 Technical White Paper

1

1. Overview of the Application Platform

The application platform is the foundation on which products are built as well as the interface for

communication between a product and the operating system. It not only encapsulates all the functions

associated with the operating system but also provides a collection of common tools. As an important

generic component, the application platform plays a key role in quick development of high-quality and

cross-platform applications.

The application platform provides a number of common features for the other components. These

features include:

 Cross-platform and low-level support: encapsulates all operations associated with the

operating system, such as Semaphore, atomic operations, shared memory/file mapping, thread,

network operations (Socket), file management, service control, registry access, Inter-process

communication (IPC), server framework and etc. This is the key component for achieving a

cross-platform and multi-platform system.

 Common features: include user authentication and authorization, strong encryption

algorithms based on the PKI infrastructure, common network protocols, binary and charset

encoding conversion, automated script engine, form handling, data compression, task

management, log, audio I/O, audio encoder/decoder, audio effects, HTTP protocol, Web

application extensions and etc.

 Cross-platform data processing functionalities: include a cross-platform report generation

library with support for Excel and HTML formats, a database component with support for ODBC

and ISO SQL/CLI interfaces, and the SQLite database engine encapsulation.

 Distributed Computing: Came up with the nano-SOA architecture and corresponding

supporting components, include: a cross-platform API registration and dispatching framework,

a generic plugin interface. Also, it offers database connectors (DBC) for implementing strong

encryption, data sharding and CAS-based optimistic locking algorithm, and has implemented

common DBC plugins. In addition, it has defined a high available, strongly consistent and high

performance distributed coordination and message dispatch service.

 Cross-platform GUI framework: encapsulates system functions such as windows, controls and

the system message mechanism, and provides a unified and platform-independent framework

for GUI applications.

 Platform-independent support for Internationalization (I18N): provides a

platform-independent multi-language environment for components such as the report

generator and GUI framework.

BaiY Application Platform

 Technical White Paper

2

2. Architecture of the Platform

The application platform is the foundation on which all the other components depend. It offers

platform-independent abstraction between software developers and the runtime environment

(hardware platform, compiler environment and the operating system), and also provides developers

with a set of cross-platform components and frameworks that are reliable, efficient and easy-to-use.

Figure 5

As illustrated in Figure 5, the application platform consists of the following correlated

components:

 libutilitis: encapsulates all fundamental functions associated with the hardware platform,

compiler environment and the operating system, and provides common features and general

frameworks.

 libcrypto: this component was implemented based on libutilitis and third-party cryptographic

and compression libraries. It encapsulates all cryptographic, compression and data encoding

algorithms. Relying on this encapsulation, the libcrypto component has implemented a

collection of common features.

BaiY Application Platform

 Technical White Paper

3

 Data processing functions (DM):

 libreport: this is the cross-platform report generation library implemented on the basis

of libutilitis. It supports a range of file formats like Excel 2.0 (BIFF), Excel XP (ExcelML),

Excel 2007 (xlsx) and HTML, and offers features including customizable templates and

variables, chart generator, and I18N capabilities.

 libodbc_cpp: this library was implemented based on libutilitis. It is a C++ encapsulation

of ODBC/ISO CLI interfaces, and supports features like prepared statement, parameter

binding, zero-copy result set retrieval (result set field pre-binding), and etc.

 libsqlite_cpp: this library was implemented based on libutilitis, libcrypto and the SQLite

engine. It is a C++ encapsulation of SQLite database engine, and supports features like

prepared statement, parameter binding, and VFS-based whole database encryption using

strong cryptographic algorithms.

 libapidbc: this library was implemented based on libutilitis, libcrypto, libodbc_cpp and

libsqlite_cpp. It has defined a set of cross-platform interfaces for common plugins, and

has further implemented a collection of common database connectors. Furthermore, it

has defined a complete set of tools used for managing API registration/dispatching and

requests queuing for communications among the functional plugins.

 User Interface and multi-media libraries:

 libaudioio: this library was implemented based on libutilitis. It provides a

platform-independent audio I/O mechanism, encoder and decoder for various audio

formats, and some general filters. Also, the library provides some common tools like the

audio playing/recording tool.

 libmlgui: this library was implemented based on libutilitis and the wxWidgets framework.

It provides a complete set of platform-independent I18N GUI frameworks and related

common features.

The above mentioned components are discussed in more details in the following sections.

BaiY Application Platform

 Technical White Paper

4

3. Cross-platform Infrastructure - libutilitis

As illustrated in the system architecture, the application platform is at the bottom layer of the

entire product, and libutilitis is the infrastructure for the platform. The main function of libutilitis is to

encapsulate all the details associated with the hardware platform, compiler environment and the

operating system, and to offer a set of easy-to-use, consistent and platform-independent APIs. Based

on these functionalities, the libutilitis library also provides some common tools and frameworks.

Figure 6

BaiY Application Platform

 Technical White Paper

5

As illustrated in Figure 6, libutilitis is composed of three interdependent modules, which are

discussed in the following sections.

3.1 The Base Module - base

The base module encapsulates the details associated with the hardware platform and the

compiler environment, and provides universal fundamental tools for the sysutil and the facilities

module.

When we start to develop a software module, we always want to provide users with the fullest

feature set, the easiest to use interface, and robust, agile and elegant components without

compromising efficiency. Unfortunately, something that can satisfy all these conditions is out of the

current human capabilities. In most cases, we have to painfully compromise some aspects.

Therefore, it is necessary to determine the importance level of each factor before we start to

design. This can help to build consistent and easy-to-understand interfaces. In terms of the base

module, the factors being considered before designing are as follows (in descending order of

importance):

1. Reliability/robustness and correctness: to either execute a task or to inform the user with an

error message explicitly.

2. Efficiency: to improve efficiency to the greatest degree possible, on the premise of ensuring

reliability and correctness.

3. Usability: to make interfaces easy-to-use and easy-to-understand as possible; to provide

obvious prompt in places where unexpected results may occur.

4. Portability: to minimize, to the greatest degree possible, the effort required for porting the

software across underlayer platforms.

5. Maintainability and extensibility: to define a clear inner structure, and to keep system

architecture as easy to extend and maintain as possible, on the premise of guaranteeing the

above factors.

The base module can also be divided into two parts according to their relevance with the

implementation details: bottom layer and interface layer.

3.1.1 Bottom Layer of the Base Module

The bottom layer of the base module handles issues related to hardware characteristics and the

BaiY Application Platform

 Technical White Paper

6

compiler environment. To ensure maximum execution efficiency, the bottom layer is completely

composed of complex macro magics and dozens of typedef.

The bottom layer is the fundamental part of the entire library. All logic judgments are achieved via

plenty of macro magic, which are difficult to use and maintain, though they have completely eliminated

runtime consumption. Users rarely need to use these macros directly, and also should avoid using them

(except for ideographic macros) when possible.

Similar with many of configurable libraries, users can adjust various function and behaviour

options available in libutilitis by defining or changing some on/off macros before compiling it.

3.1.2 Interface Layer of the Base Module

The interface layer is an encapsulation of the low-level implementations, and provides users with

consistent and easy-to-use interfaces. For example,

 Provides transparent INT64 Integer simulation in compiler environments that do not

support 64-bit Integer.

 Provides acquire, release and no barrier semantics atomic operations for 32-bit, 64-bit

and pointer data types. It is preferred to implement atomic operations via

intrinsic/built-in methods provided by the compiler and the inline assembly language.

Atomic operations are currently supported on platforms like x86/x64, IA64, ARM, POWER,

MIPS, and SPARC. For platforms that do not support hardware-level atomic operations,

libutilitis can offer atomic support via operating system API or by simulating it using a set

of mutex with hash collections optimization. If the target platform is an embedded

environment without thread support, all atomic operations will be degraded as the most

efficient and unprotected dummy implementation.

 Provides read & write, read only, and writer only memory barrier operations. Similar with

atomic operations support, it is preferred to implement memory barrier operations via

intrinsic/built-in methods provided by the compiler and the inline assembly language.

The platforms that support atomic operations also support hardware-level memory

barrier operations. For platforms that do not support the latter, libutilitis provides a

simulation using mutex.

For more details about atomic and memory barrier operations, refer to section άAtomic

Operations and volatile Keywordsέ in my document C++ Coding Guidelines (Chinese

only).

 Provides plenty of identifier macros associated with the platform or compiler. For

http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#原子操作和_volatile_关键字
http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#原子操作和_volatile_关键字
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

 Technical White Paper

7

example, force inline instructions, DLL symbol export instructions, inline assembly

instructions, the current hardware platform, compiler type, and compiler supported

characteristics (e.g., whether the compiler supports template embedding and hash

container), etc.

 Provides a series of optimization instructions associated with the low-level platform, such

as branch prediction optimization, pre-fetch optimization, and register usage

optimization related to hardware platform type.

 Provides a mechanism to guarantee the initialization order of the global objects. C++

language can only guarantee that global objects within the same compiling unit are

initialized in the defined order. There is no guarantee about the order in which global

objects from different compiling units are initialized. For compilers (e.g. GCC) that do not

support customized order for global objects initialization, libutilitis also offers a

compiler-independent mechanism to guarantee the order of global objects initialization.

For further discussions on this topic, refer to section άThreads Safety and

Interdependence Issues with Global Objects Initializationέ in my document C++ Coding

Guidelines (Chinese only).

 Implemented a collection of platform-independent call stack back tracing tools, which

can be used to obtain call stack information under the current context or under specified

context. These information include module name, source code file name, line number,

function/method name (supports MSVC/GCC name mangling) and etc.

In addition to the encapsulation of low-level details, a number of fundamental tools are also

implemented within the interface layer. For example,

 Generic handle template (a smart pointer class with reference counting support). In most

cases, the generic handle is designed to replace the traditional C pointer. Its major

characteristics are as follows:

 Automatic management: users do not need to worry about when the resources should

be destroyed and who should destroy them.

 Exception safety guarantees: satisfies RAII (Resource Acquisition Is Initialization)

semantics, and ensures that exceptions will not result in any memory leak or program

error.

 High efficiency: the generic handle has the same efficiency with a pointer for performing

all operations, except creation, destroy, and copy operations. Even while performing the

latter operations, only maintenance of reference counting is added.

 Error prevention: the generic handle can effectively avoid memory leak and other

program errors, and has dramatically simplified program design associated with pointers.

http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#全局对象初始化时的线程安全性和相互依赖性问题
http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#全局对象初始化时的线程安全性和相互依赖性问题
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

 Technical White Paper

8

 Customized destroy strategy and NIL value: programmers can customize the destroy

strategy (the default is to use delete operation) and the NIL value (set to NULL by

default). For example, for templates that deal with file handles, programmers can set the

destroy strategy as calling the file close function, and specify the NIL value as something

like INVALID_HANDLE. Customized NIL value and destroy strategy are introduced in as

template parameters and are bound with instances while compiling, so they will not add

any processor and memory consumption at runtime.

 Support for static handle (binding without ownership)

 Support for construct with DontInit indicator, which helps to create efficient local static

object with multi-thread safety. For more details about this topic, refer to section

άThread Safety Issue with Local Static Objects Initializationέ in my document C++ Coding

Guidelines (Chinese only).

 Users can specify reference counting variable type by the template parameter. This helps

to ensure multi-thread safety when using atomic variable type (the default value) to

completes reference counting. When thread safety is not required, users can choose to

implement a reference counting mechanism using primitive Integer type that has better

performance.

 Temporary handle template: similar with the generic handle template, temporary handle

template also obeys RAII semantics, customized destroy strategy and NIL value, and other

characteristics. The only difference is that the temporary handle does not support reference

counting, so users need to explicitly release ownership in order to pass pointers. Different

with the generic handle which is often used to pass objects between functions or threads, the

temporary handle usually guarantees RAII semantics and security (when an exception occurs)

for a single function or code block. Because reference counting is not needed, the temporary

handle has exactly the same efficiency as primitive pointers with respect to all operations.

 basic_buffer: the basic_buffer template is an efficient buffer management tool compatible

with the basic_string template within the C++ standard library. It is fully compatible with STL

basic_string, but offers higher space and time efficiency and a more fine-grained storage

management mechanism. Thanks to the support for a collection of technologies like

reference counting, copy-on-write, memory reallocation, buffer pre-allocation and static (no

ownership) buffer, basic_buffer can offer much higher efficiency than basic_string.

Furthermore, there is a specialised template class which is specifically optimized for BLOB

(basic_buffer<BYTE>) objects.

 String extension class: provides extension capabilities for basic_buffer or basic_string, such as

streaming operations, type conversion, common string parsing tasks, various inverse

operations, BRE/ERE/ARE (TCL 8.2) regular expressions with Unicode charset support, and

escape operations on the basis of callback or symbol table, and etc.

http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#局部静态对象初始化时的线程安全性问题
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

 Technical White Paper

9

 High-efficiency linked list node template: the CListNode template has encapsulated the node

operations associated with doubly linked list. Compared to std::list, CListNode provides O(1)

time complexity and more flexible linked list usage like node separation, node exchange and

node moving without the need for memory reallocation. When there is a need to use linked

list, users should first try to use the std::list container. Only when the std::list container

cannot satisfy the requirements, users can consider using CListNode to implement dedicated

linked list.

 LRU Cache template: the template is a buffer manager powered by the LRU (Least Recently

Used) algorithm. It supports a complete collection of operations like settings, delete, match,

traversal and management. Users can choose to perform key-value indexing and matching

using hash table (hash_map/unordered_map), B tree (std::map) or any STL compliant

containers. This buffer manager utilizes CListNode for maintaining an efficient LRU list.

 Other extensions of standard library, including: the fixed_vector template which utilizes static

buffer area and is compatible with std::vector, a circular buffer container that is compatible

with std::deque, wrapper class of standard C libraryΩs file operations, universal pointer and

subscript based iterator encapsulation, various member function adapters, and etc.

 Encapsulation of exceptions processing: this encapsulation obeys the RAII semantics and is

used to handle unexpected exceptions as well as exceptions occurred with operator new and

operator delete. For more details about this topic, refer to sections άExceptionsέ and άC++

Exceptions Mechanism Implementation and Consumptions Analysisέ in my document C++

Coding Guidelines.

 Error handling mechanism: libutilitis can capture all unprocessed fatal errors within

applications, and output them to the global logger object. These errors include:

 C++ runtime errors, such as unexpected exceptions or exceptions that are within an

exception;

 Errors reported by the operating system, such as memory access violation.

Meanwhile, the current function call stack under the problematic context will also be output

to the global logger object together with the errors.

In conclusion, the base module has encapsulated all the fundamental features associated with the

low-level platform and the compiler environment. The libutilitis library and all other modules within

the application platform highly rely on the fundamental tools defined by the base module.

http://baiy.cn/doc/cpp/index.htm#代码风格与版式_异常
http://baiy.cn/doc/cpp/inside_exception.htm
http://baiy.cn/doc/cpp/inside_exception.htm
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

 Technical White Paper

10

3.2 System Utilities Modulė sysutil

The system utilities module is built on the basis of the base module, and has encapsulated all

functionalities associated with the operating system. It offers a platform-independent, easy-to-use and

reliable interface for users to interact with system functions. The factors being considered before

designing this module and their importance levels are the same as those for the base module.

The design goal of the system utilities module was to encapsulate the great majority of common

services provided by the operating system and hardware platform. This module provides corresponding

interfaces for almost all the features and functionalities that can be found in traditional operating

system textbooks. For example:

 Process control, including:

 Create process (e.g., sub-process creation with user impressing, input/output

re-directing, hidden process creation);

 Terminate process and wait for process being terminated;

 Preemptive settings as well as settings like priority level, scheduling algorithm, and CPU

affinity;

 Set limits for resources like memory and file handle;

 Query process information, include: resource usage such as CPU time and memory size;

modules loaded by the processes; processes loaded by the system; and memory

mapping information, etc.

 Look up belonged module using a given address. For example, look up the dll/so module

that provides function calling according to a function pointer).

 Thread and TLS: support operations like create, run, suspend, continue, stop, kill and etc;

preemptive settings as well as settings like priority level, scheduling algorithm, CPU affinity,

and the ideal processor; retrieve status and statistics information of a thread; relinquish

remaining time slice of current thread, or forcibly switch to another thread; create and access

TLS storage.

 Coroutine: also known as fiber, co-process, and user thread, coroutine is a concurrency

mechanism more lightweight than thread. The libutilitis library supports a complete set of

co-routine operations, and also offers a runtime environment based on thread pool with basic

FIFO scheduling algorithm supported. By deriving a new class, users can easily specify

runtime environment and scheduling algorithm according to their own requirements.

 Synchronization mechanisms like semaphore, mutex, and event (condition variable).

Moreover, libutilitis offers high-speed synchronization mechanisms like Futex, fast semaphore

and spinlock for platforms that support hardware-level atomic operations. Futex has

BaiY Application Platform

 Technical White Paper

11

implemented full user-mode mutex that supports recursive calls, thus most of the user mode

and kernel mode switch of the lock/unlock operation could be eliminated. This has

substantially improved its working efficiency. Compared with Windows Critical Section, Futex

provides a broader range of features (such as timeout waiting) and slightly higher efficiency.

Fast semaphore has similar advantages over semaphore. Both Futex and fast semaphore

within libutilitis support spinlock operations, and can automatically detect the amount of

online processors in the current environment and fallback to the standard mode in a

single-processor environment. On platforms that do not support hardware-level atomic

operations, fast semaphore performs equally to normal semaphore, and Futex is the same as

normal mutex. So users can always retain the most efficient synchronization method

(platform-independent) without further code changes.

 Dynamic library (dll/so) loading tool: a platform-independent tool used for loading dynamic

library and locating API entry.

 Synchronous & asynchronous I/O operations on files, network, and communication devices:

libutilitis has encapsulated I/O operations associated with files, network (socket, support for

IPv4 and IPv6), and communication devices like serial port, parallel port and pipeline. It also

offers a set of platform-independent asynchronous I/O frameworks (see the following

sections).

 File mapping and shared memory: supports access control like read, write, execute and

Copy-on-write (COW), and allows users to build file mapping or shared memory at specified

base address.

 Directory management: contains a complete set of tools used for disk volume and directory

management. It supports:

 Traversal/copy/move/deletion of directories, files and sub-directories, manipulate

properties and authority settings of them.

 Retrieve of disk volume topology and file system information, as well as detailed

information of all currently mounted volume devices.

 System clock, time zone, DST rules and time span operations: libutilitis provides a complete

set of operations associated with time and calendar, and supports high precision performance

counter operations.

 High precision timer: this has encapsulated a high-precision and periodic timer mechanism

provided by the operating system.

 System log: send log messages into syslogd (unix) or System Event Service (Windows).

 Service manager: add/delete/manage services and drivers within the current platform or

within the specified computer (currently windows only).

 Service (Daemon) framework: a platform-independent framework used for developing

Windows Service or Unix Daemon.

BaiY Application Platform

 Technical White Paper

12

 Charset encoding conversion: supports Windows API, POSIX libiconv, IBM libicu and ISO C

locale API; can automatically select the best encoding converter according to charset

encoding and the current settings of the specified platform.

 Acquisition of platform information: different with the macros that are predefined in the base

module, libutilitis offers a tool used for dynamically acquiring information of the current

platform during runtime. The information include operating system type, product series,

version number, Service Pack/Patch number, system uptime, memory page size, CPU

type/width, CPU byte order, the number of processors, and etc.

 Registry access, terminal (textual user interface) control and other commonly used features.

 Memory validation (for read/write/execute), system management (log off, shut down, restart),

environment variable expanding and other miscellaneous features.

On platforms that do not support some specific features, the sysutil module also provides a

transparent simulation layer for users. For example, a virtual registry implementation (fully compatible

with the Windows registry) is provided on platforms that do not support registry operations. These

features can be compiled across platforms and can automatically switch to the implementation that is

best suitable for the current platform. For example, system offered registry service is preferred for use

on Windows platform, and the virtual registry service provided by libutilitis is used for other platforms.

In addition, the system utilities module has also supplied some application frameworks that are

closely related to the low-level platform. For example:

 The system services framework has encapsulated the standard workflow and working model

for service programs. Applications that are built upon this framework behave as a Daemon in

POSIX environment. However, in Windows, they act as a service and co-work with the System

Service Manager.

 Efficient I/O framework which will be discussed in the next section.

System-level frameworks and tools have provided big help for building some critical applications.

They have considerably reduced the cost for cross-platform transplanting, and also have improved

development efficiency as well as code quality through high-density code reuse.

Though libutilitis should offer features as consistent as possible across platforms, but apparently

there are still some differences cannot be avoided. The service manager is the most typical example.

WinNT series platforms provide a service manager to manage all the background services and drivers

within the current system. Similar mechanism does not exist in most POSIX environments (such as

un*x/linux) and DOS environment. Obviously, it is hard to implement simulation of similar features

without operating system support, because this involves interactions with the other system

components.

One key principle for designing the libutilitis library is to achieve reliability, correctness and

BaiY Application Platform

 Technical White Paper

13

completeness. We can choose to not include some features in libutilitis, but once we provide a feature

to users, we must guarantee this component can perform correctly and stably. For some specific

features, libutilitis can either not to include them, or provide a complete set of clear interfaces. For

example, libutilitis will never provide a directory access class that does not support file/sub-directory

traversal. This guarantees users will never be forced to bypass a component within libutilitis and

implement the features again by themselves because that component is lacking of some basic

functionalities.

Based on the above principle, few components within the libutilitis library may be unable to

implement fully transparent cross-platform capabilities. See the User Guide for the libutilitis library for

more details.

The base module and system utilities module together have encapsulated most of the services

associated with the platform. In real projects, however, there are chances that users need to directly

access operating system features and hardware resources. For example, when the project relies on a

third-party COM component, or when hotspot codes needs to be optimized using inline assembly

language.

One of the most attractive characteristic of C/C++ languages is, they have simultaneously provided

easy-to-use high-level language, standard libraries with a broad function list, premium efficiency, and

the capability to directly access the low-level hardware. The design goal of libutilitis is never to set

obstacles in executing these tasks, on the contrast, libutilitis is dedicated to provide a set of tools that

can help users to achieve their design goals in a more elegant and portable way.

The libutilitis library is intended to offer users a set of platform-independent implementations that

are complete, efficient and reliable. We truly understand that lacking of any of these conditions will

force users to bypass libutilitis, and turn to implement some functions (that has key importance to

them or their projects) by themselves. While substantially reducing direct interactions with the

low-level platform, libutilitis can also help users to complete those inevitable interactions in a more

structuralized and controllable way.

For example, the library contains macros that can be used to identify:

 compiler manufacturer, version, and whether the compiler and standard library supports

specific functionalities;

 the operating system on the target platform;

 CPU type/width and CPU byte order, and etc.

The library also contains other macros that can be used encapsulate different inline assembly

syntax in various compilers, and the tools class that is used to dynamically acquire platform type and

version information during the runtime.

BaiY Application Platform

 Technical White Paper

14

The libutilitis library can perform a great majority of common tasks on behalf of users, and help

users to achieve those inevitable interactions with the low-level platform in a more convenient, elegant

and portable way. These have finally resulted in a more concise, robust and easier to maintain product.

3.2.1 High performance I/O Framework

High performance I/O framework has encapsulated a high-concurrency, high-load and

multi-threaded I/O server model. In general, the current I/O models can be classified into the following

major types:

 Model 1: multi-threaded and synchronous blocking I/O model. Use άone connection per

thread/processέ design. As the most basic, easiest to implement and least efficient I/O servo

model, it is utilized by the famous apache web server. It has the following major problems:

 Creating a thread/process for each connection results in high consumption. When there

is high-concurrency, a great majority of server resources are mainly wasted on frequently

creating and switching threads/processes.

 Weak defence against DDoS attacks targeting high-concurrency and slow requests.

 Lack support for applications that need to maintain many keep-alived connections

concurrently (every connection will occupy a thread or process for a long time).

 Model 2: high-efficiency poll (epoll/kqueue/event portsΧ) mechanism with synchronous

non-blocking I/O model. Multi-threaded and άone ǊŜŀŘȅ ŎƻƴƴŜŎǘƛƻƴ ǇŜǊ ǘƘǊŜŀŘέ design. It

utilizes the efficient polling interface provided by the operating system to periodically wait for

some connections within a connections collection to become usable, and then performs

non-blocking read and write on the usable connections. That is, read data from the receive

buffer of the low-level protocol stack or copy data to the send buffer of the protocol stack.

Finally, it enters waiting status again using the polling interface. The advantage of this servo

model is: it can use a few threads to process a large amount of concurrent connections,

achieving high space and time efficiency. Its disadvantage is, the programming model is

complex and relies on specific API provided by the operating system.

 Model 3: this model is characterized as asynchronous I/O, multi-threaded, and the άone

active connection per threadέ design. In this servo model, applications submit required I/O

operations to the operating system and after the operations are complete, the operating

system will notify applications through a callback mechanism. Theoretically, this is the most

efficient I/O servo model. The reason is that applications can submit the memory address to

be transmitted to the low-level hardware, which will complete the I/O operations directly at

this memory location using DMA. This has implemented zero-copy. After the operations are

complete, the hardware will trigger an interrupt request to the operating system, which will

then callback the application. This mechanism can avoid polling waiting and connection

