BaiY Application Platform
Technical White Paper

Version: 2.43

http://baiy.cn

Copyright © 2001-2023 BaiYang. All rights reserved.

http://baiy.cn/

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

Introduction

It has been 16 years since the publication of the first edition of BaiY Application Platform. During
the years, | have written more than one million lines of codes for the platform using Assembly language
and C/C++ languages. The most fundamental and important part of the platform, the libutilitis library,
is wholly implemented by myself. In addition to the Windows platform that | had already been familiar
with, | have gradually become familiar with and become fond of some other operating systems like
Linux, FreeBSD/NetBSD/OpenBSD and OpenSolaris, during the process of encapsulating a number of
cross-platform* functions into libutilitis.

My main approach for implementing the other libraries within the platform is to design a set of
interfaces and frameworks on the basis of the libutilitis library. The specific features, such as
cryptographic and compression algorithms, the audio encoder/decoder, and cross platform Ul
components are implemented using stable third-party codes that are freely available. After taking into
account third-party open source code, the application platform contains more than five million lines of
code.

SOCIETE (@ XL Hlfi

GENERALE e .
o accenture
GE d
w» WUNITED
hEAH

ExXHEMN DeLPHI

“ STATE GRID
@@ A g) 2 PY)

AGRICULTURAL BANK OF CHINA Taob ao.c om
ZE| TEGREE BERTELSMANN [ank hE¥ART

SINOSAFE INSURANCE media worldwide £ ¥Rk - 6 B A E

og:o China = @+8xakset @G\ TEB

)
Y/ CHINA SOONG CHING LING FOUNDATION Chlna MObIIe

oga‘l an Vls-
“F cm\lb

%

A variety of products that are built upon the application platform have been widely deployed in
different production environments, such as:

= State Grid Corporation of China (SGCC, Top 2 in the world)

= ChinaNational Petroleum Corp (CNPC, Top 5in the world)

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

= General Electric Company (GE, Top 5 in the world)

= Agricultural Bank of China (ABC, Global 500)

= China Industrial Bank (CIB, Global 500)

= China Everbright Bank (CEB)

= Sinosafe Insurance

= taobao.com (The largest e-commerce platform in China)

= SOCIETE GENERALE (SOCIETE GENERALE, The second largest bank in Europe, Global 500)
= Delphi (Global 500)

= United Airlines (Global 500)

= China Unicom (Global 500)

= China Mobile (Top 50in the world)

= Bertelsmann (Global 500, The world's largest outsourcing call center)

= Teleperformance SE (TPC, French telecommunications company, 300,000 employees

worldwide)
= Accenture (Global 500)
= Eldman (The world's largest public relations company)
= China Soong Ching Ling Foundation (National Fund founded by Deng Xiaoping)
= BMW Group (Global 500)
= Shaanxi Automobile Group
= OneFoundation
= yiguo.com(China's leading fresh food e-commerce)

™= Yantai Wanhua Group

And etc. The wide deployment in real production environments not only provides a reliable and
platform-independent infrastructure for the high-level applications, but also has verified the reliability,
stability, portability and efficiency of the application platform.

Copyright of the Application Platform belongs to BaiYang, wherein a number of technologies are
subject to a number of national and international patents protections.

The application platform currently supports the following operatingsystems:

™ The full range of Windows operating systems induding Win98/ME,
WinNT4/2000/XP/2k3/Vista/2k8/Win7/2k8r2/Win8/8.1/2012/2012r2, etc.

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

Linux, FreeBSD, NetBSD, IBM, AIX, HP-UX, Solaris, MAC OS X, and a variety of Un*x/POSIX systems
vxWorks, QNX, SMX, DOS, WinCE (Windows Mobile), NanoGUI, eCos, RTEMS, Android, iOS and other embedded
systems.

The currently supported hardware platforms indude x86/x64, ARM, RISC-V, IA64, MIPS, POWER, SPARCand etc.

International Patents

‘r‘mn\n; ’—\ Wy —————
d) %

1 iE

United States Patent

LU D B

00,948 B2

x W & F

™ ERARwSNEER — RANNERRRA
- < A Patents Regist /™ t of the Hong K
tonts Rogistry « overnmant of the Hong Kong

Intetlectual Property Department Special Administrative Region

HINBARGRRAR

(WHEEH) (514])
CERTIFICATE OF GRANT OF STANDARD PATENT
BY RE-REGISTRATION
Patents Ordinance (Chapter 514)

HRATENBEBOREN (BEHAN) W2 BESERT
Wi RN p “ 5

r() £ ‘ﬁ? T ;n;u .~....¢v«u kS SRR Application Na.: 191194727

WHANARERERRAL Name and Address of Proprietor:
Bat, Yang

A Quick Brief

As previously described, BaiY Application Platform contains millions of lines of assembly, C/ C + +
code and thousands of mature general-purpose components. It has been tested in the real production
environment of numerous Fortune 500 companies. It has been used in multiple high-load
telecommunications, Intemet and distributed computing environments for more than a decade.

Thousands of mature and reliable high-quality functional components can greatly enhance the
quality of software products in terms of performance, functionality, and stability. It also brought
unimaginable convenience for the development of the product. For example:

High-performance IO server components

The Application Platform uses assembly and asynchronous 10 to optimize the network service
components. These components enable high performance network services through the memory
zero-copy and asynchronous IO mechanisms via DMA + hardware interrupts. On an entry-level 1U PC
Server (with dual-socket Intel Xeon 56xx) manufactured in 2011 (at that time, the price of the machine

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

was less than 20,000 CNY), a single node can permit tens of millions of TCP / HTTP concurrent
connections. Correspondingly, with the same machine, a general server development by Java or .NET
can only support up to 3000 to 5000 concurrent connections, PHP is even lower (See: 3.2.1 High
performance I/O Framework, 3.3.1 Web Framework, and 3.3.2 Typical Web Use Cases).

Consistent HAC and HPC across multiple active IDC

Distributed high availability and high performance duster with strong consistency assurance (anti
split-brain): Thanks for the patented nano-SOA large-scale distributed architecture. We could maintain
a high cohesion, low coupling design under the premise of keeping the single node performance to far
beyond the traditional SOA architecture, while simplifying the cluster deployment, and improve the
cluster maintainability (See: 5.4 nSOA - libapidbc, 5.4.1 SOA vs. AlO, and 5.4.2 nSOA Architecture).

BaiY Port Switch Service (BYPSS): BYPSS is designed for providing a high available, strongly
consistent and high performance distributed coordination and message dispatching service based on
the quorum algorithm. It can be used to provide services such as fault detection, service election,
service discovery, distributed lock, and other distributed coordination functionalities, it also integrates
a message routing service.

Thanks for our patented algorithm, we eliminate the network broadcast, disk |0 and other major
costs within the traditional Paxos / Raft algorithms. We have also done a lot of other optimizations,
such as: support for batch mode, use the concurrent hash table and high performance |0 component.
These optimizations allow BYPSS to support ultra-large-scale computing dusters consist with millions
nodes and trillions ports in a limited (both for throughput and latency) cross-IDC network environment
(See: 5.4.3 Port Switch Service).

Scaling out nodes across multiple active IDC and keeping strong consistency guarantee is the key
technology of modern high-performance and high-availability cluster, which is also recognized as the
main difficulty in the industry. As examples: September 4, 2018, the cooling system failure of a
Microsoft data center in South Central US caused Office, Active Directory, Visual Studio and other
services to be offline for nearly 10 hours; August 20, 2015 Google GCE service interrupted for 12 hours
and permanently lost part of data; May 27, 2015, July 22, 2016 and Dec 5, 2019 Alipay interrupted for
several hours; As well as the July 22, 2013 and Mar 29, 2023 WeChat service interruption for several
hours, and etc. These major accidents are due to product not implement the multiple active IDC
architecture correctly, so a single IDC failure led to full service off-line.

We have over 10 years of experience in the distributed computing field. We hold the related
distributed architecture and algorithms which protected by a number of national and international
patents. Thanks to these leading distributed clustering algorithms and architectures, we can deploy
multiple active IDC cluster with strong consistent, high availability, and high-performance guarantee
easily. We have been implemented the truly multiple active IDC cluster on full range of our products,

v

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

providing our customers with unparalleled data reliability and service availability assurance.

Distributed coordination service

o . .l
oMl oml

Figure 1

Distributed coordination services provide functions such as service discovery, service election,
fault detection, failover, failback, distributed lock, task scheduling, message routing and message
dispatching.

The distributed coordination service is the brain of a distributed cluster that is responsible for
coordinating all the server nodes in the cluster. Make distributed clusters into an organic whole that
works effectively and consistently, making it a linear scalable high performance (HPC) and high
availability (HAC) distributed clustering system.

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

Traditional Paxos/Raft distributed coordination cluster
Acceptor A Acceptor B Acceptor C Acceptor D

b2

b1

b1l: Proposerinitiate the proposal
b2: Acceptor vote (accept / reject)

. : Other preparation steps Proposer

a: submit request, c: return the result

App Server Cluster

i
i

Figure 2

|

The traditional Paxos / Raft distributed coordination algorithm initiates voting for each request,
generating at least 2 to 4 broadcasts (b1, b2...) and multiple disk |0. Making it highly demanding on
network throughput and communication latency, and cannot be deployed across multiple data centers.

Our patent algorithm completely eliminated these overheads. Thus greatly reducing the network
load, significantly improve the overall efficiency. And makes it easy to deploy clusters across multiple

data centers.

Vi

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

Figure 3

Based on our unique distributed coordination technology, the high performance, strong
consistency cluster across multiple data centers can be implemented easily. Fault detection and failover
can be done in milliseconds. The system is still available even if the entire data center is offline. We also
providing a strong consistency guarantee: even if there is a network partition, it will not appear split
brain and other data inconsistencies. For example:

Vil

BaiY Application Platform

a BaiY Product . .
Technical White Paper

Slave Node B Master Node A

1.Tom : Account balance 100
2.Node B: Tom Transfer 20 , the balance of 80
3.Node A: Tom Transfer 30, the balance of 70

4 Tom actual balance
should be 50

VIP:10.1.1.8

Provide services through the VIP

Figure 4

In the traditional dual fault tolerance scheme, the slave node automatically promotes itself as the
master node after losing the heartbeat signal and continues to provide services to achieve high
availability. In this case, split brain problem occurs when both the master and slave nodes are normal,
but the heartbeat connection is accidentally disconnected (network partition). As shownin Figure 4: At
this time, node A and B both think that the other party is offline. As a result, both nodes upgrade
themselves to the master node and provide the same service, respectively. This will result in
inconsistent data that is difficult to recover.

Our BYPSS service provides the same level of consistency as the traditional Paxos / Raft distributed
algorithm, fundamentally eliminates the occurrence of inconsistendies such as split brain.

Similarly: ICBC, Alipay and other services are also have its own remote disaster recovery solutions
(Alipay: Hangzhou — Shenzhen, ICBC: Shanghai — Beijing). However, in their remote disaster
recovery schemes, there is no paxos and other distributed coordination algorithms between the two
data centers, so strong consistency cannot be achieved.

For example, a transfer transaction that has been successfully completed at Alipay may take
several minutes or even hours to be synchronized from the Hangzhou main IDC to the disaster recovery
center in Shenzhen. When the Hangzhou main data center offline, all of these non-synchronized

Vi

BaiY Application Platform

a BaiY Product . .
Technical White Paper

transactions are lost if they switch to the disaster recovery center, leads a large number of
inconsistencies. Therefore, ICBC, Alipay and other institutions would rather stop the service for hours
or even longer, and would not be willing to switch to the disaster recovery center in the major
accidents of the main IDC. Operators will consider turning their businessinto a disaster recovery center
only after a devastating accident such as a fire in the main data center.

Therefore, the remote disaster recovery schemes and our strong consistency, high availability,
anti-split brain multi-IDC solutionis essentially different.

In addition, Paxos / Raft cannot guarantee the strong consistency of data during the process of
simultaneous failure and recovery of more than half of the nodes, and may cause inconsistencies such
as phantom reading (For example, in a three-node duster, node A goes offline due to power failure,
and after one hour, nodes B and C go offline because of disk failure. At this point, node A resumes
power supply and goes online again, and then the administrator replaces the disks of nodes B and C
and restores them to go online. At this point, the data modification of the entire cluster in the last hour
will be lost, and the duster will fall back to the state before the A node goes offline at 1 hour ago).
BYPSS fundamentally avoids such problems, so BYPSS has a stronger consistency guarantee than Paxos
/ Raft.

Due to the elimination of a large number of broadcast and distributed disk 10 and other high-cost
operation brought by the Paxos / Raft algorithm. Making BYPSS distributed coordination component
also provides more excellent features in addition to the above advantages:

Bulk operation: Allows each network packet to contain a large number of distributed coordination
requests at the same time. Network utilization greatly improved, from the previous less than 5% to
more than 99%. Similar to the difference between a flight only can transport one passenger each time,
and another one can transport full of passengers. In the actual test, in a single Gigabit network card,
BYPSS can achieve 4 million requests per second performance. In the dual-port 10 Gigabit network card
(currently the mainstream data center configuration), the throughput of 80 million requests per second
can be reached. There is a huge improvement compared to the Paxos / Raft cluster which performance
is usually less than 200 requests per second (restricted by its large number of disk 10 and network
broadcast).

Large capacity: usually every 10GB of memory can support at least 100 million ports. In a 1U-size
entry-level PC Server with 64 DIMM slots (8TB), it can support at least 80 billion objects at the same
time. In a 32U large PC server (96TB), it can support about 1 trillion distributed coordinating objects. In
contrast, traditional Paxos / Raft algorithms can only effectively manage and schedule hundreds of
thousands of objects due to their limitations.

The essence of the problem is that in algorithms such as Paxos / Raft, more than 99.99% of the
cost is spent on broadcast (voting) and disk writes. The purpose of these behaviors is to ensure the
reliability of the data (data needs to be stored on persistent devices on most nodes simultaneously).

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

However, distributed coordination functions such as service discovery, service election, fault detection,
failover, failback, distributed lock, and task scheduling are all temporary data that have no long-term
preservation value. So it makes no sense to spend more than 99.99% of your effort to persist multiple
copies of them - even if there is a rare disaster that causes the main node to go offline, we can
regenerate the data in an instant with great efficiency.

It’s as if tom bought a car that has an additional insurance service. The terms are: In the event of a
fatal traffic accident, it provides a back in time mechanism that takes tom back to the moment before
the accident, so he can avoid this accident. Of course, such a powerful service is certainly expensive,
and it probably needs to prepay all the wealth tom’s family can get in the next three generations. And
these prepaid service fees are not deductible even if he has never had a fatal traffic accident with this
car. Such an expensive service that is unlikely to be used in a lifetime (what percentage of people will
have fatal traffic accidents? Not to mention that it can only happen on the specific car), even if it does
happen, this huge priceis hard to say isworth it?

And we offer a different kind of additional service for our cars: Although there is no back in time
function, our service can instant and intact resurrect all the victims in the same place after the fatal
accident. The most important thing is that the service will not charge any fees in advance. Tom only
needs to pay a regenerative technology service fee equivalent to his half-month salary after each such
disaster.

In summary, our patented distributed coordination algorithm providing strong consistency and
high availability assurance at the same level as the traditional Paxos / Raft algorithm. At the same time,
it also greatly reduces the system's dependence on the network and disk 10, and significantly improves
the overall system performance and capacity. This is a significant improvement in the high availability
(HAC) and high performance (HPC), large-scale, strongly consistent distributed clusters.

For a further description of the BYPSS service, see: 5.4.3 Port Switch Service.

Efficient high-strength cryptographic components

This includes basic functions such as public-key algorithms, symmetric encryption algorithms, data
encoding and decoding, hash and message authentication algorithms, data compression algorithms,
and etc (See: 4. Cross-platform Cryptographic Library - libcrypto, and 4.1 The Cryptographic Algorithm
Module - algorithm). In addition, the application platform also provides a number of highly abstract
advanced components, such as:

The Virtual File System (VFS) supports data encryption and compression on-the-fly. VFS supports
dozens of strong encryption algorithms, induding AES (128/256), TwoFish, etc., optimized using AES-NI,
SSE4 and other assembly instruction set, with high efficiency. We use this component to provide
on-the-fly data compression and strong encryption protection for the whole database and

X

BaiY Application Platform

a BaiY Product . .
Technical White Paper

configuration categoriesin our products like BlueWhale, WhiteDolphin, ZhiYeling.com and so on. It also
includes strong cryptographic communication protection components based on Public Key
Infrastructure (PKI) and etc. (See: 4.2 The Common Facilities Module - facility)

In recent years, security issues frequently occur. Well-known enterprises such as Amazon,
Wal-Mart, Yahoo, Linkedin, OpenAl (ChatGPT), Sony, JP Morgan Chase, UPS, eBay, dj.com, Alipay,
ctrip.com, 12306, Netease, CSDN, China Life Insurance, as well as major hotel groups (such as HOME
INNS, HANTING INNS, lJinjiang Hotels, InterContinental, Sheraton, Marriott, etc.) are frequently
reported a large number of users information disdosure and others serious security incidents, security
protection demand immediate attention.

All of our databases (the entire dataset) and configuration data are stored in our self-developed
VFS which supports on-the-fly data compression and strong encryption, provides comprehensive
protection for our customers.

In addition, our unique High Performance Network Security Tunnel (BYST) component provides
high-performance, high-throughput and high-network utilization VPN services while maintaining
communication security, further help customs improve the performance and security of network
communication in local, metro and wide area networks (see:5.6 Secure Tunnel Service (BYST)).

Strong encryption algorithms based on industry standards ensure that even if a supercomputer
with one trillion trillions of key cracking attempts per second is made in the future, it will still take an
average of 540 billion years to crack a key.

Data query engine

The application platform also includes a query engine. Its ability is better than SQL language.
Having own query engine gives us the flexibility to switch between RDBMSs such as MySQL, MS SQL
Server, Oracle, DB2, SQLite, and NoSQL databases like MongoDB and Cassandra. In addition to making
applications database-independent, the query engine also provides a variety of advanced
characteristics that are not supported by SQL language, such as ARE (Advanced Regular Expressions)
query with support for Unicode charset, join query with support for nested tables, mix query of
business data and configuration data, virtual field query, and other customized queries.

The query engine was implemented using C/C++, and its hotspot codes were optimized using
assembly language for mainstream hardware platforms. 13 million times of evaluation of expressions
per second can be achieved on a ThinkPad W510 notebook (having 4 cores and 8 threads @1.6GHz)
produced in 2010, using a single core and a single thread only (See: 3.3 Common Facilities Module -
facility, and 5.4 nSOA - libapidbc).

Xl

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

More...

The above only refers to a few highlights within the thousands of components in BaiY Application
Platform. A more complete description is given below.

Xl

a BaiY Product

BaiY Application Platform
Technical White Paper

Revision History

Version

Description

Changed by Reviewed by

1.0 2007-07-21 | First edition migrated from the old introduction Bai Yang
document

1.1 2007-08-09 | Updated document structure (changed section Bai Yang
6.3.3 to section 6.4) and corrected minor
wording errors

1.2 2008-01-04 | Added description about Web application Bai Yang
extensions

1.3 2008-03-19 | Added support for bz2 algorithm Bai Yang

1.4 2009-12-02 | Updated AlO framework and added support for Bai Yang
SCGlI

1.5 2010-04-27 | Restructured the document; added support for Bai Yang
HTTP

1.6 2010-06-13 | Added Web framework comparison table Bai Yang

1.7 2010-07-06 | Added description about HTTP Pipelining Bai Yang

1.8 2010-08-25 | Added new components such as LRU Cache, Bai Yang
according to recent adjustment to the low-level
library

1.9 2010-08-27 | Added description about a typical working Bai Yang
model of Web application nodes

1.10 2010-12-10 | Added support for /dev/poll and pollset to the Bai Yang
AIO framework

1.11 2011-06-07 | Annual update; added description about the Bai Yang
development kit for the CConfig component

1.12 2012-03-15 | Annual update; added description about Bai Yang
components such as variant data type

1.13 2012-04-12 | Added LZ4 data compression algorithm Bai Yang

2.0 2012-04-17 | Restructured the document; moved description Bai Yang
about the cross-platform GUI framework and the
cross-platform audio processing library to
chapter 6. Interface, Media and Other Tools;
added chapter 5. Data Processing Tools

2.1 2012-04-19 | Added new sections such as 6.3 CConfig Bai Yang
Language Binding Component and 6.4 JavaScript
Tools Library - libbaiy

2.2 2012-05-07 | Added description about generic query Bai Yang
conditions and QLI (Query Language Interpreter)

2.3 2012-05-19 | Added description about Search Helper Bai Yang

2.4 2012-06-09 | Added JavaScript Keyword Tree container into Bai Yang

X1l

BaiY Application Platform

a BaiY Product . .
Technical White Paper

Version Date Description Changed by Reviewed by
libbaiy
2.5 2012-12-02 | Updated figures and page layout Bai Yang
2.6 2013-01-16 | Annual update; corrected an invalid reference Bai Yang
2.7 2013-03-11 | Updated description about atomic and Memory Bai Yang
Barrier
2.8 2013-03-16 | Added support for SHA-3 Bai Yang Huasong Liu
2.9 2013-05-22 | Corrected a typo Bai Yang
2.10 2014-01-12 | Annual update; added the cross-platform Bai Yang
mechanism used for tracing function call stack
2.11 2014-02-14 | Added new components (e.g. Message Bai Yang
Dispatcher) to libbaiy.js
2.12 2014-06-07 | Added the Task Queue component to libbaiy.js Bai Yang
2.13 2015-02-07 | Added description about the libapidbc library Bai Yang
2.14 2015-03-23 | Added further discussions about distributed Bai Yang

caching, NoSQL and NewSQL into the section

Database and memcached Services

2.15 2015-05-06 | Rewording; corrected some typos; updated Bai Yang
some data

2.16 2015-05-30 | Small updates Bai Yang

2.17 2015-07-24 | Updated some sections Bai Yang

2.18 2015-11-04 | Small updates Bai Yang

2.19 2015-12-21 | Updated some data Bai Yang

2.20 2016-1-22 Small updates Bai Yang

2.21 2016-4-13 Updated some sections Bai Yang

2.22 2016-7-15 Updated some data Bai Yang

2.23 2016-10-04 | Add support for CRC32-C, ChaCha, and BLAKE2 Bai Yang
algorithms

2.24 2016-12-06 | Add “A Quick Brief” section Bai Yang

2.25 2016-12-16 | Add “BYPSS based High performance cluster” Bai Yang
section

2.26 2017-04-03 | Added description about the diff function of the Bai Yang
CConfig component

2.27 2017-08-06 | Added “Distributed coordination service” section | Bai Yang

2.28 2017-10-07 | Added “Distributed FTS Service” section Bai Yang

2.29 2018-01-13 | Small updates Bai Yang

2.30 2018-03-26 | Change "uSOA" to "nano-SOA" to avoid Bai Yang
confusion with "micro-SOA"

2.31 2018-05-22 | Add support for ARIA, Kalyna, Simon, Speck, Bai Yang
SM4, ThreeFish, SipHash, Poly1305, SM3
algorithms

XV

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

Version Date Description Changed by Reviewed by ‘

2.32 2019-01-12 | Added description for BYDMQ distributed Bai Yang
message gueue component

2.33 2019-02-13 | Add support for CHAM, HIGHT, LEA, SIMECK, Bai Yang
Rabbit, and HC algorithms

2.34 2019-03-23 | Add support for SHAKE algorithm Bai Yang

2.35 2019-04-27 | Added description for BYST secure tunnel Bai Yang
component

2.36 2020-08-18 | Added the glance of our international patents Bai Yang

2.37 2021-03-03 | Added some supplementary descriptions related | Bai Yang
to BYST

2.38 2021-10-16 | Added support for LSH algorithm Bai Yang

2.39 2021-10-26 | Small updates Bai Yang

2.40 2021-10-31 | Add a summary description for 5.6 Secure Bai Yang
Tunnel Service (BYST)

2.41 2022-02-20 | Clarified several BYPSS/BYDMQ related details; Bai Yang
fixed individual typos

2.42 2023-02-25 | Update typical customer list and patent list Bai Yang

2.43 2023-02-38 | Add millisecond level failover support for BYPSS Bai Yang
and BYDMQ

XV

LA
—

l‘%\ aBaiVY Product BaiY Application Platform
Technical White Paper
INTRODUCTION ...ttt es et b st e b b et e £ Rt E b e b et s e b e R s e R e R e e E e R e R e n AR e R e e AR e R £ e A e e b e R e e R e R e R e e s e e R e R et s e e b et s e ebene e s nenenin |
AVQUUICK BRIEF ... ttieiteeeerteeiteeeiteeeetteeeeaeeesseeesseeeesseessaeessseesseesassseasssessssesasseesnsesesssseessseenssseasssesssseessssesasessnssesssseesaseessssessnsseesssessssessssen Il
High-performance [0 SErver COMPONENTSccciiieirieisteieistereee et e e e te e e e sae e sressesesta s e e ssesessensesessensesessassesensesessensesessans 1]
Consistent HAC and HPC across Multipl@ @CiVE IDC......cciuieiiereiriiieeriisieeetesseesie et se e sessesessesaesessesessassesessesaesessaneene \%
Efficient high-strength cryptographiC COMPONENTS.......coiviieiiiceceeeece ettt be st se s ebe st sesr e et e e ebe e neane X
DAt QUETY BNZINE@ ...ttt ettt ettt et st b e e st s b et e b e e e st e b e e e b et emeebe s b eae e b em e e s e sben e e b et e st nb et entsb et ebe b entsbentebesseneeneebans XI
1 o= TP P T X
REVISION HISTORYo.oiiiiiiiteiiiirietees st te sttt b st e s se e s e bese s e se b eme s e be st se b e se s b e se e e e e be b et ee b e e s e e b e st ne b e b eneneebenese s et e et ntenin X1
CONTENTS ..ottt bt e b bt e bkt s e bR e £ e b b4 £ e b e bt e b e b b e e A A b e R e b e b e e E e b Re e b e b b e e s e b e R e ne b bt b bt st et e b e et es XVI
1. OVERVIEW OF THE APPLICATION PLATFORMcocoiiiiieiiininiee sttt sttt ettt n et en s 1
2. ARCHITECTURE OF THE PLATFORIMoo ittt ettt sttt st et e st e s ae e sae e sae e st e e s beeaae e sae e seeteenseenteensesneeeneeenseeneenn 2
3. CROSS-PLATFORM INFRASTRUCTURE - LIBUTILITISocuiiiiiieiiiriie ettt sttt 4
3.0 THE BASE IVIODULE = BASEecvietesttesueesteesseessaesseesssesseesseessessssssessssessssssesssesssesssssssesssssssssssesssessesnsesssesssessssssessssessesseessessseessesnsesnsen 5
3.1.1 Bottom Layer Of the BasSe MOTUIE.....c.ciieireeeieeeeeereetc ettt et sa st a e e st se s sasseneseesenaseseassanens 5
3.1.2 Interface Layer Of the BaS@ MOGUI ...ttt ettt a et sttt s aeaeebe e ebestennetensenens 6
3.2 SYSTEM UTILITIES IMODULE ~7 SYSUTIL tuutttieuteieteeeteeieteesetseessseesseesssseasssessssessssssasssssssssasssssanssssnsesssssssssssssssesssssssssssssssessanssssnsasans 10
3.2.1 High performance |/O FIAMEWOTKcccvriruririerie ettt sttt ee s st ssesesssessssensssssessnsens 14
3.3 COMMON FACILITIES IMIODULE = FACILITY 1etiuteeeteeeitteieteeeteeeiuseeseseesessesassesssessassasasssssssssasssssansessasssessssssssssssssessassssssssssasessassessnsesans 16
3.3, WED FIramEWOTK ...ecueieieueuiireeieereeteseresteteitst st ie st et b ettt b et s e e b et s b e st s s e b e st e et e b e se e s b e b e et e b e st b e b ebe et e b eneneasebenen 24
3.3.2 TYPICAl WED USE CSES ...ttt sttt et sttt et st et s st et et e s et et eae st et e be st e st st e e ebe st e st saessenessareasessan 30
3.3.3 FASTCGI? SCGI? HTTP! .ttt sttt sttt s b et st b et bbb et ek be et st e ket e b e b e ae b e se e st et enenentebanin 41

4. CROSS-PLATFORM CRYPTOGRAPHIC LIBRARY - LIBCRYPTO

4.1 THE CRYPTOGRAPHIC ALGORITHM IMODULE = ALGORITHM...ceuteitteeteasreentesseessessseessesasesssesssesssesssessessnsesssessesssssseessassseessessssesseessesnne
0 I o Yol Q@] =T = o o Y T OO 43
4.1.2 Stream Cipher AlGOTIthMSottt ettt a e et e e e et e s e s e e seebe e eseeseseesesaassasessansaseaes 45
4.1.3 PUDIIC KEY ALZOTTTMS ...ttt ettt sttt e et e e e s e e et e b e se s saese et s esese et esnasssesanenersns 46
4,14 HAaSh AIGOTITNIMS ...ttt et st et et et st e e b e e e be et e e e aesbensebesaess et ensebe st ensebasbansese b ensesensesestansesenes 46
4.1.5 Message Authentication AlGOMTTNMS. ..ot ettt a e ae e besae e saeneenens 47
4.1.6 Data Compression AIZOTITNIMScciririreiirieeer et ettt ettt e et s s e s e s et ene e esesese st esesenensesenensesan 47
4.1.7 Data ENcode/Decode AIGOITTNIMScccuiieiiieieiieteecte ettt ettt sa et as st te et bese s esebeas s et esessebebesesasebeseasabas 47
4.1.8 Random Number Gen erator AlGOMTTNMt st a et se e e se s esesae e sesaeneas 47

4.2 THE COMMON FACILITIES IMODULE = FACILITY 1eeuuteeuteseeeeereeesseesseseseasseessesssessessesnsesnsesssssssesssssnsesssssnsesssesssessessssessssssesssssssesssessseses 48

5. DATA PROCESSING TOOLSottt bbb b e b e bbb S b e e R e e R e e E e R e R e e R e e R e e R e e R e e b e n b e s b e s b e b e s b e e b e e e e e 49

XVI

CJ
&

‘%‘ a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

5.1 REPORT GENERATION LIBRARY = LIBREPORT.....cueuetetetereresesesesesesesssasesasasasasasssssesssasasesesssssssssssssssesssssssssssssssensssnsssssssnsssssnsnsssnsssssssnns 49
5.2 ODBC ENCAPSULATION LIBRARY = LIBODBC_CPP....vveveteverereresesnseresesesssssesssssssssssssssesssssssessnssenes 49
5.3 SQLITE ENCAPSULATION LIBRARY = LIBSQLITE_CPPcuetreeueuirereeresesessesesessesssessssssasessssesensssssenssssessssssesssessesesesesssesensssssenssssessssssnsens 51
5.4 NSOA - LIBAPIDBC ..vuvuvevevetteeetssssesesesssssesesesesesesesesesesesesesesesesasesesesesesesesesesasasesesesesssssssssssssssssssssesssssessssssssnsssssssssssnssssssssssssssssns 52
5141 SOANVS. AlD .ottt sttt ettt s e st e st e sbe s bt st e e sht e s st e s b e s st e b e saseeasesasesasesatasase s st esasesstenbe e st e saba s st enstenbe e se e basseentasreennes 54
5.4.2 NSOA ArCNITECIUNE ..ottt st e et e b et e bbb et s et e se e b et e e b e s eae e s ene 56
5.4.3 POrt SWITCN SEIVICE (BYPSS) ..o cuieiicieteestecte e ste et te et e e te et st et st et e et e st ese et eseebe st e se et eseens et eneebesensetessetesteseebeseannstansans 57
5.4.4 Distributed Message Queue Service (BYDIMIQ)cccceeeurieieuiienisteesieseeessesessssssesesssssesesessesesessssesessssssesessssssessssssesenes 79
5.5 DISTRIBUTED FULL TEXT SEARCH (FTS) SERVICE...cueveueueeetrureerertstesissesesttssssssesessesssesssssessssssensssssesssesssssenesssesesssesensssesesssessssssanens 85
5.6 SECURE TUNNEL SERVICE (BYST) 1uviuietiiteiitiiieteiteiste et eteste e e te e s se st e e ste st esestetesesteseesasteseebasaesatanaesstensesasaess et aneesasteseesesaensesesasersan 86
6. INTERFACE, MEDIA AND OTHER TOOLS ...ttt ittt ettt sttt bbbt e bbb sa et b bbb e e beenrabn
6.1 CROSS-PLATFORM AUDIO | /O LIBRARY - LIBAUDIOIO
6.2 CROSS-PLATFORM | 18N GUI FRAMEWORK = LIBMLGUL.....cueueueuererereuerereresesesssssasssssssssssssssssssssssssessssssnsssssssssnsssssssssssssssssssssssssssssnsns 92
6.2.1 File SYSTEM EXTENSTON ...eiieieteieisieteesteertee ettt te ettt et e et et et ese e b et ese st eseese et aseese s eneebeseesenteseesenseneesessenenseraaserean 94
6.2.2 118N COMPONENTS LIDIary . .ccv ettt e st s b et senenes 94
6.2.3 QUICK HEIP FFAMEWOTKceeevireeiiteieieeteeete et te et st ettt e b e be st e et e e ebesbeseebassesebassess st ensebesseseabeneesenseseetessensesensasersan 96
6.2.4 UNiversal GraphiC CONTIOIScciiicieiieiierieisestees et es et e st et e e ese s e e et e e e s et esesba st eneesessesesseseesessesestansesessesasesn 98
6.3 CCONFIG LANGUAGE BINDING COMPONENT......ceeteuererereetaseesaesessesseseeesesssessssssesesssesessesesensssssessnssesssssessessnsssesesensssesanssssesensses 102
6.4 JAVASCRIPT TOOLS LIBRARY = LIBBAIY ..vveveuerereuetereusueresesesassessasssssssesssssssssssssssssestsssssessssssssstssssnssssssssssensssssssssssssssssssssssesesssesens 102
6.4. 1 FUNCLIONS LIDIATY oottt ettt et s et e et e e s s e s e s s e st e se st e e ese st esasseseeseasanessessensasesseseesereesessanensans 103
6.4.2 USEI INTEITACE LIDIAIY .ottt ettt ettt et a et s ae s e sa et e sa st aes et st esnnerensennnn 104
7. ERROR PROCESSING IMIECHANISIMooitiiiiiiiiieite sttt sttt st bbb et et s st s bt e e bt e abe e s tesatesseesaeesbeenbeesatenneann 106

XVII

a BaiY Product BaiY Application Platform

Technical White Paper

1. Overview of the Application Platform

The application platform is the foundation on which products are built as well as the interface for
communication between a product and the operating system. It not only encapsulates all the functions
associated with the operating system but also provides a collection of common tools. As an important

generic component, the application platform plays a key role in quick development of high-quality and
cross-platform applications.

The application platform provides a number of common features for the other components. These
featuresinclude:

*

Cross-platform and low-level support: encapsulates all operations assocated with the
operating system, such as Semaphore, atomic operations, shared memory/file mapping, thread,
network operations (Socket), file management, service control, registry access, Inter-process
communication (IPC), server framework and etc. This is the key component for achieving a
cross-platform and multi-platform system.

Common features: include user authentication and authorization, strong encryption
algorithms based on the PKI infrastructure, common network protocols, binary and charset
encoding conversion, automated script engine, form handling, data compression, task
management, log, audio 1/O, audio encoder/decoder, audio effects, HTTP protocol, Web
application extensions and etc.

Cross-platform data processing functionalities: include a cross-platform report generation
library with support for Excel and HTML formats, a database component with supportfor ODBC

and ISO SQL/CU interfaces, and the SQlite database engine encapsulation.

Distributed Computing: Came up with the nano-SOA architecture and corresponding
supporting components, indude: a cross-platform API registration and dispatching framework,
a generic plugin interface. Also, it offers database connectors (DBC) for implementing strong
encryption, data sharding and CAS-based optimistic locking algorithm, and has implemented
common DBC plugins. In addition, it has defined a high available, strongly consistent and high
performance distributed coordination and message dispatch service.

Cross-platform GUI framework: encapsulates system functions such as windows, controls and
the system message mechanism, and provides a unified and platform-independent framework

for GUI applications.

Platform-independent support for Internationalization (118N): provides a
platform-independent multi-language environment for components such as the report
generator and GUI framework.

a BaiY Product

BaiY Application Platform
Technical White Paper

2. Architecture of the Platform

The application platform is the foundation on which all the other components depend. It offers

platform-independent abstraction between software developers and the runtime environment

(hardware platform, compiler environment and the operating system), and also provides developers

with a set of cross-platform components and frameworks that are reliable, efficient and easy-to-use.

BaiY Cross-Platform Libraries Relationship Chart

Functions Library

libutilitis |

base (compiler env, etc.)
sysutil(system function)
facility(common features)

A

libcrypto |

A

v]

<. Independent GUI

encryption algm libreport
compression algm libodbc_cpp
common facilities libsqlite_cpp
libapidbc
Figure5

Interface, Media and Others

wxWidgets |

Afamous Platform

Framework

libmlgui
libaudioio
language bindings
libbaiy(javascript)

by BaiYang /2006 - 2012

As illustrated in Figure 5, the application platform consists of the following correlated

components:

* libutilitis: encapsulates all fundamental functions assodated with the hardware platform,
compiler environment and the operating system, and provides common features and general

frameworks.

* libcrypto: this component was implemented based on libutilitis and third-party cryptographic
and compression libraries. It encapsulates all cryptographic, compression and data encoding

algorithms. Relying on this encapsulation, the libcrypto component has implemented a

collection of common features.

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

* Data processing functions (DM):

= libreport: this is the cross-platform report generation library implemented on the basis
of libutilitis. It supports a range of file formats like Excel 2.0 (BIFF), Excel XP (ExcelML),
Excel 2007 (xlIsx) and HTML, and offers features including customizable templates and
variables, chart generator, and 118N capabilities.

= libodbc_cpp: this library was implemented based on libutilitis. It is a C++ encapsulation
of ODBC/ISO CLI interfaces, and supports features like prepared statement, parameter

binding, zero-copy result set retrieval (result set field pre-binding), and etc.

= libsqlite_cpp: this library was implemented based on libutilitis, libcrypto and the SQLite
engine. It is a C++ encapsulation of SQlite database engine, and supports features like
prepared statement, parameter binding, and VFS-based whole database encryption using
strong cryptographic algorithms.

= libapidbc: this library was implemented based on libutilitis, libcrypto, libodbc_cpp and
libsglite_cpp. It has defined a set of cross-platform interfaces for common plugins, and
has further implemented a collection of common database connectors. Furthermore, it
has defined a complete set of tools used for managing API registration/dispatching and

requests queuing for communications among the functional plugins.

* User Interface and multi-media libraries:

= libaudioio: this library was implemented based on libutilitis. It provides a
platform-independent audio I/O mechanism, encoder and decoder for various audio
formats, and some general filters. Also, the library provides some common tools like the
audio playing/recording tool.

= libmlgui: this library was implemented based on libutilitis and the wxWidgets framework.
It provides a complete set of platform-independent 118N GUI frameworks and related
common features.

The above mentioned components are discussed in more details in the following sections.

CJ
&

"‘%‘ a BaiY Product

BaiY Application Platform
Technical White Paper

3. Cross-platform Infrastructure - libutilitis

As illustrated in the system architecture, the application platform is at the bottom layer of the
entire product, and libutilitis is the infrastructure for the platform. The main function of libutilitis is to
encapsulate all the details associated with the hardware platform, compiler environment and the
operating system, and to offer a set of easy-to-use, consistent and platform-independent APIs. Based

on these functionalities, the libutilitis library also provides some common tools and frameworks.

libutilitis Module Structure

base |

@ Defines the macros and types associated
with the compiling environment and
hardware platform.

@ Implemented generic handle class (smart
pointer class), buffer area management,
character string enhancement, and other
fundamental tools.

Implemented easy-to-use and extensible
generic functions and a design patterns

N
sysutil |
@ Built on the basis of the base module;
encapsulated functionalities associated
with the operating system.
@ Provides efficient, robust and easy-to-use
|mp0rt function components and development
N
facility |
@ Build on the basis of base and sysutil;
implemented some commonly used
auxiliary functions.
Import framework

by BaiYang / 2006

Figure 6

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

As illustrated in Figure 6, libutilitis is composed of three interdependent modules, which are
discussed in the following sections.

3.1 The Base Module - base

The base module encapsulates the details associated with the hardware platform and the
compiler environment, and provides universal fundamental tools for the sysutil and the facilities
modaule.

When we start to develop a software module, we always want to provide users with the fullest
feature set, the easiest to use interface, and robust, agile and elegant components without
compromising efficiency. Unfortunately, something that can satisfy all these conditions is out of the
current human capabilities. In most cases, we have to painfully compromise some aspects.

Therefore, it is necessary to determine the importance level of each factor before we start to
design. This can help to build consistent and easy-to-understand interfaces. In terms of the base
module, the factors being considered before designing are as follows (in descending order of
importance):

1. Reliability/robustness and correctness: to either execute a task or to inform the user with an
error message explicitly.

2. Effidency: to improve efficdiency to the greatest degree possible, on the premise of ensuring

reliability and correctness.

3. Usability: to make interfaces easy-to-use and easy-to-understand as possible; to provide
obvious prompt in places where unexpected results may occur.

4. Portability: to minimize, to the greatest degree possible, the effort required for porting the
software across underayer platforms.

5. Maintainability and extensibility: to define a clear inner structure, and to keep system
architecture as easy to extend and maintain as possible, on the premise of guaranteeing the
above factors.

The base module can also be divided into two parts according to their relevance with the
implementation details: bottom layer and interface layer.

3.1.1 Bottom Layer of the Base Module

The bottom layer of the base module handles issues related to hardware characteristics and the

BaiY Application Platform

a BaiY Product . .
Technical White Paper

compiler environment. To ensure maximum execution efficiency, the bottom layer is completely
composed of complex macro magics and dozens of typedef.

The bottom layer is the fundamental part of the entire library. All logic judgments are achieved via
plenty of macro magic, which are difficult to use and maintain, though they have completely eliminated
runtime consumption. Users rarely need to use these macros directly, and also should avoid using them
(except for ideographic macros) when possible.

Similar with many of configurable libraries, users can adjust various function and behaviour
options available in libutilitis by defining or changing some on/off macros before compiling it.

3.1.2 Interface Layer of the Base Module

The interface layer is an encapsulation of the low-level implementations, and provides users with
consistent and easy-to-use interfaces. Forexample,

* Provides transparent INT64 Integer simulation in compiler environments that do not
support 64-bit Integer.

* Provides acquire, release and no barrier semantics atomic operations for 32-bit, 64-bit
and pointer data types. It is preferred to implement atomic operations via
intrinsic/built-in methods provided by the compiler and the inline assembly language.
Atomic operations are currently supported on platforms like x86/x64, 1A64, ARM, RISC-V,
POWER, MIPS, and SPARC. For platforms that do not support hardware-level atomic
operations, libutilitis can offer atomic support via operating system APl or by simulating
it using a set of mutex with hash collections optimization. If the target platform is an
embedded environment without thread support, all atomic operations will be degraded
as the most efficient and unprotected dummy implementation.

* Provides read & write, read only, and writer only memory barrier operations. Similar with
atomic operations support, it is preferred to implement memory barrier operations via
intrinsic/built-in methods provided by the compiler and the inline assembly language.
The platforms that support atomic operations also support hardware-level memory
barrier operations. For platforms that do not support the latter, libutilitis provides a
simulation using mutex.

For more details about atomic and memory barrier operations, refer to section “Atomic
Operations and volatile Keywords” in my document C++ Coding Guidelines (Chinese

only).

* Provides plenty of identifier macros associated with the platform or compiler. For

6

http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#原子操作和_volatile_关键字
http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#原子操作和_volatile_关键字
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

a BaiY Product . .
Technical White Paper

example, force inline instructions, DLL symbol export instructions, inline assembly
instructions, the current hardware platform, compiler type, and compiler supported
characteristics (e.g., whether the compiler supports template embedding and hash
container), etc.

* Provides a series of optimization instructions associated with the low-level platform, such
as branch prediction optimization, pre-fetch optimization, and register usage
optimization related to hardware platform type.

* Provides a mechanism to guarantee the initialization order of the global objects. C++
language can only guarantee that global objects within the same compiling unit are
initialized in the defined order. There is no guarantee about the order in which global
objects from different compiling units are initialized. For compilers (e.g. GCC) that do not
support customized order for global objects initialization, libutilitis also offers a
compiler-independent mechanism to guarantee the order of global objects initialization.
For further discussions on this topic, refer to section “Threads Safety and

Interdependence Issues with Global Objects Initialization” in my document C++ Coding
Guidelines (Chinese only).

* Implemented a collection of platform-independent call stack back tracing tools, which
can be used to obtain call stack information under the current context or under specified
context. These information indude module name, source code file name, line number,
function/method name (supports MSVC/GCC name mangling) and etc.

In addition to the encapsulation of low-level details, a number of fundamental tools are also
implemented within the interface layer. For example,

* Generic handle template (a smart pointer class with reference counting support). In most
cases, the generic handle is designed to replace the traditional C pointer. Its major
characteristics are as follows:

= Automatic management: users do not need to worry about when the resources should
be destroyed and who should destroy them.

= Exception safety guarantees: satisfies RAIl (Resource Acquisition Is Initialization)
semantics, and ensures that exceptions will not result in any memory leak or program

error.

= High efficiency: the generic handle has the same efficiency with a pointer for performing
all operations, except creation, destroy, and copy operations. Even while performing the

latter operations, only maintenance of reference counting is added.

™= Error prevention: the generic handle can effectively avoid memory leak and other
program errors, and has dramatically simplified program design assodated with pointers.

http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#全局对象初始化时的线程安全性和相互依赖性问题
http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#全局对象初始化时的线程安全性和相互依赖性问题
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm

BaiY Application Platform

a BaiY Product . .
Technical White Paper

= Customized destroy strategy and NIL value: programmers can customize the destroy
strategy (the default is to use delete operation) and the NIL value (set to NULL by
default). For example, for templates that deal with file handles, programmers can set the
destroy strategy as calling the file close function, and specify the NIL value as something
like INVALID_HANDLE. Customized NIL value and destroy strategy are introduced in as
template parameters and are bound with instances while compiling, so they will not add

any processor and memory consumption at runtime.
= Supportfor static handle (binding without ownership)

= Support for construct with Dontlnit indicator, which helps to create efficient local static
object with multi-thread safety. For more details about this topic, refer to section
“Thread Safety Issue with Local Static Objects Initialization” in my document C++ Coding

Guidelines (Chinese only).

= Users can specify reference counting variable type by the template parameter. This helps
to ensure multi-thread safety when using atomic variable type (the default value) to
completes reference counting. When thread safety is not required, users can choose to
implement a reference counting mechanism using primitive Integer type that has better
performance.

* Temporary handle template: similar with the generic handle template, temporary handle
template also obeys RAIl semantics, customized destroy strategy and NIL value, and other
characteristics. The only difference is that the temporary handle does not support reference
counting, so users need to explicitly release ownership in order to pass pointers. Different
with the generic handle which is often used to pass objects between functions or threads, the
temporary handle usually guarantees RAIl semantics and security (when an exception occurs)
for a single function or code block. Because reference counting is not needed, the temporary
handle has exactly the same efficiency as primitive pointers with respect to all operations.

* basic_buffer: the basic_buffer template is an effident buffer management tool compatible
with the basic_string template within the C++ standard library. It is fully compatible with STL
basic_string, but offers higher space and time effidency and a more fine-grained storage
management mechanism. Thanks to the support for a collection of technologies like
reference counting, copy-on-write, memory reallocation, buffer pre-allocation and static (no
ownership) buffer, basic_buffer can offer much higher efficiency than basic_string.
Furthermore, there is a specialised template class which is specifically optimized for BLOB
(basic_buffer<BYTE>) objects.

* String extension class: provides extension capabilities for basic_buffer or basic_string, such as
streaming operations, type conversion, common string parsing tasks, various inverse
operations, BRE/ERE/ARE (TCL 8.2) regular expressions with Unicode charset support, and
escape operations on the basis of callback or symbol table, and etc.

http://baiy.cn/doc/cpp/advanced_topic_about_multicore_and_threading.htm#局部静态对象初始化时的线程安全性问题
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

* High-efficiency linked list node template: the CListNode template has encapsulated the node
operations assodated with doubly linked list. Compared to std::list, CListNode provides O(1)
time complexity and more flexible linked list usage like node separation, node exchange and
node moving without the need for memory reallocation. When there is a need to use linked
list, users should first try to use the std::list container. Only when the std::list container
cannot satisfy the requirements, users can consider using CListNode to implement dedicated
linked list.

* LRU Cache template: the template is a buffer manager powered by the LRU (Least Recently
Used) algorithm. It supports a complete collection of operations like settings, delete, match,
traversal and management. Users can choose to perform key-value indexing and matching
using hash table (hash_map/unordered_map), B tree (std:map) or any STL compliant
containers. This buffer manager utilizes CListNode for maintaining an effident LRU list.

* Other extensions of standard library, including: the fixed_vector template which utilizes static
buffer area and is compatible with std::vector, a circular buffer container that is compatible
with std::deque, wrapper class of standard C library’s file operations, universal pointer and
subscript based iteratorencapsulation, various member function adapters, and etc.

* Encapsulation of exceptions processing: this encapsulation obeys the RAIl semantics and is
used to handle unexpected exceptions as well as exceptions occurred with operator new and
operator delete. For more details about this topic, refer to sections “Exceptions” and “C++
Exceptions Mechanism Implementation and Consumptions Analysis” in my document C++

Coding Guidelines.

* Error handling mechanism: libutilitis can capture all unprocessed fatal errors within
applications, and output them to the global logger object. These errors include:

= C++ runtime errors, such as unexpected exceptions or exceptions that are within an
exception;

= Errors reported by the operating system, such as memory access violation.

Meanwhile, the current function call stack under the problematic context will also be output
to the global logger object together with the errors.

In conclusion, the base module has encapsulated all the fundamental features associated with the
low-level platform and the compiler environment. The libutilitis library and all other modules within
the application platform highly rely on the fundamental tools defined by the base module.

http://baiy.cn/doc/cpp/index.htm#代码风格与版式_异常
http://baiy.cn/doc/cpp/inside_exception.htm
http://baiy.cn/doc/cpp/inside_exception.htm
http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/doc/cpp/index.htm

a BaiY Product BaiY Application Platform

Technical White Paper

3.2 System Utilities Module —sysutil

The system utilities module is built on the basis of the base module, and has encapsulated all
functionalities assodated with the operating system. It offers a platform-independent, easy-to-use and
reliable interface for users to interact with system functions. The factors being considered before
designing this module and their importance levels are the same as those for the base module.

The design goal of the system utilities module was to encapsulate the great majority of common
services provided by the operating system and hardware platform. This module provides corresponding
interfaces for almost all the features and functionalities that can be found in traditional operating
system textbooks. For example:

*

Process control, induding:

= Create process (e.g., sub-process creation with user impressing, input/output

re-directing, hidden process creation);
= Terminate process and wait for process being terminated;

= Preemptive settings as well as settings like priority level, scheduling algorithm, and CPU
affinity;

= Set limits for resources like memory andfile handle;

= Query process information, include: resource usage such as CPU time and memory size;
modules loaded by the processes; processes loaded by the system; and memory

mapping information, etc.

= Look up belonged module using a given address. For example, look up the dll/so module
that providesfunction calling according to a function pointer).

Thread and TLS: support operations like create, run, suspend, continue, stop, kill and etc;
preemptive settings as well as settings like priority level, scheduling algorithm, CPU affinity,
and the ideal processor; retrieve status and statistics information of a thread; relinquish
remaining time slice of current thread, or forcibly switch to another thread; create and access
TLS storage.

Coroutine: also known as fiber, co-process, and user thread, coroutine is a concurrency
mechanism more lightweight than thread. The libutilitis library supports a complete set of
co-routine operations, and also offers a runtime environment based on thread pool with basic
FIFO scheduling algorithm supported. By deriving a new class, users can easily specify

runtime environment and scheduling algorithm according to their own requirements.

Synchronization mechanisms like semaphore, mutex, and event (condition variable).
Moreover, libutilitis offers high-speed synchronization mechanisms like Futex, fast semaphore
and spinlock for platforms that support hardware-level atomic operations. Futex has

10

BaiY Application Platform

a BaiY Product . .
Technical White Paper

implemented full user-mode mutex that supports recursive calls, thus most of the user mode
and kernel mode switch of the lock/unlock operation could be eliminated. This has
substantially improved its working efficiency. Compared with Windows Critical Section, Futex
provides a broader range of features (such as timeout waiting) and slightly higher efficiency.
Fast semaphore has similar advantages over semaphore. Both Futex and fast semaphore
within libutilitis support spinlock operations, and can automatically detect the amount of
online processors in the current environment and fallback to the standard mode in a
single-processor environment. On platforms that do not support hardware-level atomic
operations, fast semaphore performs equally to normal semaphore, and Futex is the same as
normal mutex. So users can always retain the most efficdent synchronization method
(platform-independent) without further code changes.

* Dynamic library (dll/so) loading tool: a platform-independent tool used for loading dynamic
library and locating API entry.

* Synchronous & asynchronous 1/O operations on files, network, and communication devices:
libutilitis has encapsulated I/O operations associated with files, network (socket, support for
IPv4 and IPv6), and communication devices like serial port, parallel port and pipeline. It also
offers a set of platform-independent asynchronous I/O frameworks (see the following

sections).

* File mapping and shared memory: supports access control like read, write, execute and
Copy-on-write (COW), and allows users to build file mapping or shared memory at specified
base address.

* Directory management: contains a complete set of tools used for disk volume and directory

management. It supports:

= Traversal/copy/move/deletion of directories, files and sub-directories, manipulate

properties and authority settings of them.

= Retrieve of disk volume topology and file system information, as well as detailed

information of all currently mounted volume devices.

* System clock, time zone, DST rules and time span operations: libutilitis provides a complete
set of operations associated with time and calendar, and supports high precision performance
counter operations.

* High precision timer: this has encapsulated a high-precision and periodic timer mechanism
provided by the operating system.

* System log: send log messages into syslogd (unix) or System Event Service (Windows).

* Service manager: add/delete/manage services and drivers within the current platform or

within the spedfied computer (currently windows only).

* Service (Daemon) framework: a platform-independent framework used for developing
Windows Service or Unix Daemon.

11

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

* Charset encoding conversion: supports Windows API, POSIX libiconv, IBM libicu and ISO C
locale API; can automatically select the best encoding converter according to charset
encoding and the current settings of the specified platform.

* Acquisition of platform information: different with the macros that are predefined in the base
module, libutilitis offers a tool used for dynamically acquiring information of the current
platform during runtime. The information include operating system type, product series,
version number, Service Pack/Patch number, system uptime, memory page size, CPU
type/width, CPU byte order, the number of processors, and etc.

* Registry access, terminal (textual user interface) control and other commonly used features.

* Memory validation (for read/write/execute), system management (log off, shut down, restart),
environment variable expanding and other miscellaneous features.

On platforms that do not support some specific features, the sysutil module also provides a
transparent simulation layer for users. For example, a virtual registry implementation (fully compatible
with the Windows registry) is provided on platforms that do not support registry operations. These
features can be compiled across platforms and can automatically switch to the implementation that is
best suitable for the current platform. For example, system offered registry service is preferred for use
on Windows platform, and the virtual registry service provided by libutilitis is used for other platforms.

In addition, the system utilities module has also supplied some application frameworks that are
closely related to the low-level platform. For example:

* The system services framework has encapsulated the standard workflow and working model
for service programs. Applications that are built upon this framework behave as a Daemon in
POSIX environment. However, in Windows, they act as a service and co-work with the System
Service Manager.

* Effident I/O framework which will be discussed in the next section.

System-level frameworks and tools have provided big help for building some critical applications.
They have considerably reduced the cost for cross-platform transplanting, and also have improved
development efficiency as well as code quality through high-density code reuse.

Though libutilitis should offer features as consistent as possible across platforms, but apparently
there are still some differences cannot be avoided. The service manager is the most typical example.
WinNT series platforms provide a service manager to manage all the background services and drivers
within the current system. Similar mechanism does not exist in most POSIX environments (such as
un*x/linux) and DOS environment. Obviously, it is hard to implement simulation of similar features
without operating system support, because this involves interactions with the other system
components.

One key principle for designing the libutilitis library is to achieve reliability, correctness and

12

BaiY Application Platform

a BaiY Product . .
Technical White Paper

completeness. We can choose to not include some features in libutilitis, but once we provide a feature
to users, we must guarantee this component can perform correctly and stably. For some specific
features, libutilitis can either not to indude them, or provide a complete set of clear interfaces. For
example, libutilitis will never provide a directory access class that does not support file/sub-directory
traversal. This guarantees users will never be forced to bypass a component within libutilitis and
implement the features again by themselves because that component is lacking of some basic
functionalities.

Based on the above principle, few components within the libutilitis library may be unable to
implement fully transparent cross-platform capabilities. See the User Guide for the libutilitis library for
more details.

The base module and system utilities module together have encapsulated most of the services
associated with the platform. In real projects, however, there are chances that users need to directly
access operating system features and hardware resources. For example, when the project relies on a
third-party COM component, or when hotspot codes needs to be optimized using inline assembly
language.

One of the most attractive characteristic of C/C++ languages is, they have simultaneously provided
easy-to-use high-level language, standard libraries with a broad function list, premium effidency, and
the capability to directly access the low-level hardware. The design goal of libutilitis is never to set
obstades in executing these tasks, on the contrast, libutilitis is dedicated to provide a set of tools that
can help users to achieve their design goals in a more elegant and portable way.

The libutilitis library is intended to offer users a set of platform-independent implementations that
are complete, efficient and reliable. We truly understand that lacking of any of these conditions will
force users to bypass libutilitis, and turn to implement some functions (that has key importance to
them or their projects) by themselves. While substantially reducing direct interactions with the
low-level platform, libutilitis can also help users to complete those inevitable interactions in a more
structuralized and controllable way.

For example, the library contains macros that can be used to identify:

= compiler manufacturer, version, and whether the compiler and standard library supports
spedfic functionalities;

= the operating system on the target platform;
= CPU type/width and CPU byte order, and etc.
The library also contains other macros that can be used encapsulate different inline assembly

syntax in various compilers, and the tools class that is used to dynamically acquire platform type and
version information during the runtime.

13

a BaiY Product

BaiY Application Platform
Technical White Paper

The libutilitis library can perform a great majority of common tasks on behalf of users, and help

users to achieve those inevitable interactions with the low-level platform in a more convenient, elegant
and portable way. These have finally resulted in a more condise, robust and easier to maintain product.

3.2.1 High performance |I/O Framework

High performance 1/O framework has encapsulated a high-concurrency, high-load and
multi-threaded 1/O server model. In general, the current I/O models can be classified into the following
major types:

*x

Model 1: multi-threaded and synchronous blocking 1/0 model. Use “one connection per
thread/process” design. As the most basic, easiest to implement and least efficient I/O servo
model, it is utilized by the famous apache web server. It has the following major problems:

= Creating a thread/process for each connection results in high consumption. When there
is high-concurrency, a great majority of server resources are mainly wasted on frequently
creating and switching threads/processes.

= Weak defence against DDoS attacks targeting high-concurrency and slow requests.

= lack support for applications that need to maintain many keep-alived connections

concurrently (every connection will occupy a thread or process for a long time).

Model 2: high-efficiency poll (epoll/kqueue/event ports..) mechanism with synchronous
non-blocking 1/0 model. Multi-threaded and “one ready connection per thread” design. It
utilizes the efficient polling interface provided by the operating system to periodically wait for
some connections within a connections collection to become usable, and then performs
non-blocking read and write on the usable connections. That is, read data from the receive
buffer of the low-level protocol stack or copy data to the send buffer of the protocol stack.
Finally, it enters waiting status again using the polling interface. The advantage of this servo
model is: it can use a few threads to process a large amount of concurrent connections,
achieving high space and time efficiency. Its disadvantage is, the programming model is

complex and relies on specific API provided by the operating system.

Model 3: this model is characterized as asynchronous |I/O, multi-threaded, and the “one
active connection per thread” design. In this servo model, applications submit required 1/0
operations to the operating system and after the operations are complete, the operating
system will notify applications through a callback mechanism. Theoretically, this is the most
efficient I/O servo model. The reason is that applications can submit the memory address to
be transmitted to the low-level hardware, which will complete the 1/O operations directly at
this memory location using DMA. This has implemented zero-copy. After the operations are
complete, the hardware will trigger an interrupt request to the operating system, which will
then callback the application. This mechanism can avoid polling waiting and connection

14

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

collection maintenance operations in model 2. Furthermore, by submit multiple I/0O requests
to the underlayer driver simultaneously, there is possibility for the operating system and the
low-level hardware to merge operations (merge several messages into a single network frame
or disk I/O request to complete read and write) and to optimize request order (the disk head
begins read/write requests from the nearest track). The major disadvantage of this model is
the complex programming model. Besides, its actual performance depends on the
implementation method of the operating system.

Theoretically, the asynchronous 1/O architecture utilized by model 3 offers the highest I/O
efficiency. In practice, its actual efficiency highly depends on how the operating system implements the
AlO mechanism. For example, both Linux and Solaris do not support real kernel-level socket AIO
operations. All asynchronous I/O operations on these systems are user-mode simulations using
multi-threaded synchronous blocking I/O operations (i.e., model 1). We can predict that using the AIO
services provided by these systems can only result in serious performance degradation.

On the other hand, high-efficiency polling interfaces like epoll, kqueue, port_get, /dev/poll and
pollset have achieved the O(1) level constant time complexity in their corresponding systems.
Moreover, a majority of modern operating systems have implemented (partially) zero-copy
non-blocking I/0 operation using reference counting and Copy-on-write (COW) mechanisms of memory
page. Thus, in real production environments, we need to conduct extensive performance tests and
kernel source codes analysis, in order to determine which I/0O model can offer highest efficiency for the
current platform.

The high performance I/0 framework implemented by libutilitis offers a platform-independent /O
mechanism, and always attempts to choose the most effident I/O servo model for the current platform.
To be specific:

* Use overlapped I/O + IOCP on WinNT series platforms (NT/2k/xp/2k3/Vista/2k§/Win7 and the
like).
* Use overlapped I/0 + Event on WinCE series platforms (WinCE/WinMobile).

* Use POSIX AIO + Realtime Signal on posix platforms that support kemel-level AIO, such as
FreeBSD/Apple Mac OS X/HP-UX/IBM AIX. However, there are exceptions to network AlO
(Socket AlQ), because different operating systems have different implementation for
high-concurrency I/O. These exceptions are:

= On FreeBSD, Socket AlO isimplemented using kqueue.

™= On HP-UX v11, Socket AlOis implemented using /dev/poll.

= OnIBMAIXv6.1and above, Socket AlO is implemented using pollset.

= On all other platforms, AlOis implemented using POSIX AlO + Realtime Signal.

* Use non-blocking I/0 and epoall on Linux.

15

a BaiY Product BaiY Application Platform

Technical White Paper

Use non-blocking IO and kqueue on NetBSD/OpenBSD/DrangonfFly.
Use non-blocking I/0 and Event Completion Framework on (Open)Solaris.

Use thread pool and blocking 1/0 simulation in environments (such as RTEMS/eCos/DOS) that
do not support any of the high performance I/O models.

3.3 Common Facilities Module - facility

The common facilities module is built on the basis of the base and sysutil modules, thus it has

naturally achieved platform independence. It provides the fundamental algorithms, functionalities,

design patterns and frameworks, which are mainly used to simplify project building and to improve
code re-usage. The followingis a list of facilities offered by this module:

x

Various commonly used synchronization algorithms: a RAIl confirmed encapsulation of various
synchronization algorithms like critical section, full synchronization locks, Reader/Writer locks
and Producer/Consumer locks, and their corresponding optimized variants like fast Semaphore,
Futex and spinlock optimizations.

Time, time span and calendar tools with time zone and Daylight Saving Time (DST) rules, and
corresponding time zone and DST rules interpreter.

Command line interpreter with support for complex syntax.

Message queue with multi-thread safety: an encapsulation of a high-efficiency message queue
mechanism used for inter-thread communication. This can be implemented using std::deque,
std::list, std::priority_queue (priority queue) and circular queue which are defined in the base
module, or several other containers (specified as template arguments). The queue uses
Producer-Consumer algorithm, and offers a list of variants that are optimized for different usage
cases (specified as template arguments, such as variants using futex and spinlock).

In addition to the traditional message queue, libutilitis has also implemented a message queue
that allows unlimited writing by producers. However, if generation speed exceeds the speed of
consumption, which has caused the queue to be full, then the newly generated elements will
replace the oldest unconsumed elements from the queue. This kind of message queue is mainly
used in situations when there is high requirement for responsiveness but no requirement for
reliable message delivery.

Logging mechanism: libutilitis provides a graded logging method, which allows users to set the
lowest level (lowest urgency) allowed for recording events for logger objects. Each logger object
can be bound to several loggers simultaneously. A logger represents a class of data targets used
for storing logs, such as windows, files, system logging service, and etc. When the user writes

16

BaiY Application Platform

a BaiY Product . .
Technical White Paper

logs into a logger object, these logs will be distributed to all the loggers that are bound with this
logger object. The libutilitis library has implemented various types of loggers induding files,
terminal windows, standard output device, periodic files, memory buffer, network connection,
system logging service (Windows Event Log service and UNIX syslogd), and standard log servers
talking syslog protocol (RFC 3164). Users can also easily implement their own loggers through
simple derivation.

Logger objects also support a tool called filter, which provides a callback mechanism, monitors
and filters logs for the current object, and decides whether a log message is allowed to be
recorded. The libutilitis library has provided log filters based on wildcard and regular expression.
Users can also easily implement their own filter mechanism.

Logger objects support logging messages in a non-blocking manner, to improve concurrency and
to mitigate the delay and performance degradation caused by log message surge. In
non-blocking model, applications submit log messages to a message queue, and the logger
object will complete all filtering and recording tasks within a separate thread. Users can
continue working with no need to wait for the logs to be written into the recording device (e.g.,
disk, network, and screen).

* Modem control (AT commands on serial communication): supports a full range of AT commands,
time-out operations, and dial-up and back-to-back connections (used for long-distance and
narrowband transmission at a low cost).

* Reliable Session Protocol (RSP, based on TCP and serial communication) defined by Bell Labs is
widely used in Avaya switches and other high reliability areas. RSP protocol maintains its own
receive & send windows, and has implemented re-send upon timeout, heartbeat detection, and
flow control algorithm based on message window and real-time RTT auto adapting.

* Effident and message-based session-layer protocol: this is implemented via two methods. The
AlO version is implemented on the basis of the High Performance I/O Framework provided by
libutilitis, and is ideal for high-concurrency and high-load environments like large-scale servers.
The synchronous I/O version is easy to use, and is applicable to client and low-load servers.

* HTTP and FTP clients: supports passive FTP mode, HTTP Keep-Alive Connection, SSL/TLS, and
HTTP/FTP/SOCKS agents.

* A Web framework that is based on the effident I/O framework as well as HTTP/FastCGI/SCG
protocols (see the following sections for more details).

* Keyword tree and keyword tree with matching rules: keyword tree is a common container that
is usually used for hierarchical prefix match for certain type of key value information, such as
automatic completion and area codes matching. Keyword tree with matching rules has the

17

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

same behaviours with normal keyword tree. The exception is that the token added into the tree
can be divided into two halves by the specified delimiter. The first half uses standard keyword
tree match. After the first half is matched, several times of matching by user-defined rule will be
performed on the second half (e.g., rules of regular expression). The item can be deemed to be
a real match only when the rules are satisfied.

* Timer: different with the high precision timer that is within the sysutil module and is based on
operating system related services, the timer here is implemented using timing threads that are
maintained by libutilitis itself. The reason for implementing this timer is that the high precision
timer provided by the operating system usually causes high consumption of resources and the
total number of triggers is limited. For example, each process on Windows platform can create a
maximum of 16 high precision triggers simultaneously. Moreover, creating high precision trigger
will also change the hardware clock interrupt frequency, thus decrease the overall system
performance.

The timer provided by libutilitis can support a lot of timer tasks triggered periodically. It also
supports timer groups: namely, all timer-triggered tasks are divided into several groups by type,
and each group of tasks run on a dedicated timing thread without interference other groups.

The advantages for doing this include:

= Running different timers on different threads can eliminate mutual blocking between
timers.

= Users are allowed to specify different timer resolution and priority level for different
threads.

= Users can enable the timer calibration feature for timer groups that require high precision
(millisecond level). When this feature is enabled, the triggering interval will be calculated
based on factors like actual blocking interval and actual consumptions of executing the
periodicity tasks.

* Task manager (based on the timer): the task scheduling component consists of two parts: the
task manager and planned tasks. They provided very similar functionalities with the timer. In
fact, the task manager itself is implemented on the basis of the timer. Each application can
contain any number of timer threads (but most applications need only one timer thread). In
each timer thread, there can be any number of timers. As a special type of timer, each task
manager can contain any number of planned tasks to be executed.

Offering the above three levels of timer mechanism is not something done on a whim, butis the
result of observation on real use cases. The reason for offering several timer threads is already
described in details in the descriptions about the timer. Here we will discuss the difference
between using task scheduler and using the timer directly.

18

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

= Timer can be triggered only at spedified intervals. However, the triggering condition for
scheduled tasks can be quite complex.

= |t is hard to achieve co-working among several timers. However, scheduled tasks can be
grouped by type and the groups can easily co-work with each other (usually, each group of
tasks are managed by a dedicated task manager).

= Scheduled tasks can be executed by the order of priority, but timers do not support this.

= Scheduled tasks are usually created in heap and are maintained using smart handle. They
support “fire and forget” semantic. Users just need to create tasks, and do not need to
worry about when they should be destroyed and who should destroy them.

* Message processing framework: this has defined a common message processing framework
that supports the Chain of Responsibility and command patterns, and has implemented
message pre-processing and message dispatching mechanisms.

* Prototype factory: this has defined an efficdent prototype factory framework that is
implemented using balanced binary trees or hash tables.

* Persistence framework: this defines an object persistence (serialization) framework, and has
implemented two storage formats for collection serialization, one supports random access, and
the other is mainly used for long-term archiving. Persistent data can be written into any data
sink and read from any data source.

* Virtual registry (CConfig): it provides Windows registry simulation service. The main
characteristic of virtual registry is, it is implemented on the basis of ISXF format, which is a
platform-independent binary format. This guarantees:

Platform-independence capability and superior read & write performance of data
accessing.

= |18N capability: strings within the virtual registry are all saved in Unicode (UTF-8). This
guarantees that issues like garbled texts displayed/saved and incorrect data will never
occur in any language environment.

= High effidency: after the virtual registry is loaded, all subkeys and values are stored in the
balanced binary tree. This can ensure high efficiency even when searching in or accessing a

large data set.

= The CConfig component also provides the ability to calculate the difference between any
two objects. The difference data (incduding records such as addition, modification, and

19

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

deletion of values and subkeys) are stored in a compact and efficient binary format. The
difference data can be applied to the specified CConfig object to implement version control
functions such as version rollback and multi-version management. The CConfig component
also supports the conversion of binary differential data into human-readable summary text.
This makes it easy for applications to implement administrative functions like revision
review and change auditing.

= Support for importing/exporting data from/to CSV, INI, JSON, and XML files, and import
and export operations between the virtual registry and Windows registry.

CConfig Schema has been widely used for communication between different systems
(subsystems), because it has a bunch of advantages: high efficiency,
platform-independence, 118N, self-explanation, extensibility, flexibility, and the support for
CSV, INI, JSON, XML and other common data formats. In addition to the CConfig
configurations editor tool, we also provide CConfig development kit for commonly used
languages like JavaScript, C/C++, Java, .NET (C#, VB.NET, J#, and etc.) and PHP, for the
purpose of reducing cost for partners and third-party developers.

For more details about CConfig, see sections 6.2.4 Universal Graphic Controls, 6.3 CConfig
Language Binding Component, and 6.4 JavaScript Tools Library - libbaiy .

* String-matching rules: each string-matching rules table can contain any number of
string-matching rules. Users can specify the string to be matched based on the rules collection.
The matching rules currently supported by libutilitis include: range, wildcard, regular expression,
enumeration, and etc.

* Thread pool: to create and management thread pool objects that can be adjusted dynamically.

* Common data processing framework: libutilitis has defined a high performance data processing
framework that supports zero-copy and provides a broad range of data sources and data sinks,
such as source and sink that are based on files, network, serial port, object queue, and memory
buffer. The framework has also implemented various filters such as container filter and T filter.
The libaudioio library, which we will discuss in the following sections, is implemented using this
framework.

* Virtual File System (VFS): it is an abstraction framework. Anything like a folder that contains
files can be encapsulated as a virtual volume. There are two types of VFS virtual volume:
encapsulated virtual volume and file-based virtual volume.

The encapsulated virtual volume implemented by libutilitis contains standard disk directory,

FTP-based VFS and HTTP-based virtual files. The libutilitis library has also defined a basic
file-based virtual volume, which can pack a folder containing any number of files and

20

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

subdirectories into a single file to be accessed as a VFS. Itis also allowed to add metadata of any
complexity for each file and directory (by attaching a virtual registry on it). Furthermore,
libutilitis provides a virtual volume implementation that is fully based on memory, which is
spedifically useful for creating temporary data and implementing memory cache.

A virtual volume can contain other virtual volumes, and allows nested access with zero
performance loss. Additionally, libcrypto has defined a file-based virtual volume that supports
compression and strong encryption on-the-fly (see following sections for more details).

* Runtime environment manager: it provides the following common runtime functionalities:

= Environment variables management: maintains an internal environment variables system
own by the application itself, and provides traversal and string expanding services. The
variables manager supports recursive resolution of environment variables and
referencing of system environmentvariables.

= File deletion reservation: users can reserve a deletion before creating a temporary file.
This can ensure this file is deleted the next time the relevant application is launched (at
the latest), even when the system has got a serious problem such as power down. The
file deletion reservation service guarantees transaction-based completeness.

= Temporary file creation: to create and open a temporary file atomically.

* |P network list based on IP address and mask: IPv4 and IPv6. Supported operations include
matching, traversal, add, delete, serialization, and etc. This can be used for implementing
whitelist and blacklist.

* Inter-System eXchangeable Format (ISXF) read/write operations: Inter-system exchangeable
format is a platform-independent, self-explanatory binary data encoding. It is mainly used for
data serialization and information exchange over network. The ISXF encoding is inspired from
data exchange schemes like SUN XDR (NDR/RPC) and ISO/IEC/ITU ASN.1 2002 DER/BER. ISXF is
spedifically optimized for Intel and recent ARM, RISC-V and MIPS processor architectures (LE
byte order). ISXF format message can be read from any data source and be written to any data
sink.

* Variant data type (CVarType): it is mainly used for situations that require use of dynamic types,
such as highly abstracted data interfaces. Like the traditional VARIANT and _variant_t, CVarType
has implemented dynamic type operations that are similar to those in JavaScript. The difference
between CVarType and other implementations (like _variant_t) is, CVarType eliminates the need
for resolving issues like inter-process or inter-language message passing, thus it has
implemented efficient zero-copy message passing using reference counting and Copy-on-write
technologies. This can dramatically improve space and time efficiency.

* Platform-independent language resource pack and a multi-language control framework based

21

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

on Observer (publish/subscribe) pattem. The matching of any language resource is O(1)
complexity, and each item in the language pack can contain any number of titles, tips, help
information, and additional data resource. The language pack can automatically complete tasks
like encoding conversion and font matching according to the current runtime environment.

* Effident CSV/JSON generator and parser: uses iterative algorithms and a manually optimized
lexer, which allow bigfiles to be generated and parsed efficiently at low overhead.

* Stack operations based on files and data blocks.

* Periodicfile operation: provides a file handling class that can automatically perform periodic file
creation (daily, weekly, monthly, and etc.). It also allows users to specify the maximum number
of files that can be retained. This component is often used as the log fadility for long-term
running services.

* Encapsulation of file-like read/write operations from/to dynamic and static memory buffers.

* Generic data query object: this has defined a generic query statement, namely, (restrictions)
AND (query condition) + Sort Criteria + Limit/Offset limitation + advanced options. The
“restrictions” and “query condition” can be composed of any number of sub expressions, each
of which can contain operations like equal to, not equal to, belong to, more than, more than or
equal to, less than, less than or equal to, wildcard matching, and regular expression matching.
The data query object is responsible for completing validity check on the operations.

Additionally, several sub expressions can be concatenated using conjunctions like AND, OR and
predicates like NOT. AND operations have higher priority over OR operations, but parenthesized
expressions are supported for the purpose of re-defining priority for operations. In the Sort
Criteria, users can specify any number of fields to sort themin ascending or descending order.

The purpose for adding a separate “restriction” is to help users to implement functionalities like
data access control.

* Data query engine: the query engine will perform syntax analysis, semantics analysis, and
Intermediate Code generation and optimization, and will execute query on the final abstract
tree. It uses “parenthesized expression > AND > OR” priority order to perform parsing and
evaluation on the expressions, and also supports short-circuit expressions (short-circuit
evaluation). To guarantee generality and flexibility, the evaluation of sub expressions can be
completed by user-supplied visitor.

In addition to making applications database-independent, the query engine also provides a

variety of advanced characteristics that are not supported by SQL language, such as ARE
(Advanced Regular Expressions) query with support for Unicode charset, join query with

22

BaiY Application Platform

a BaiY Product . .
Technical White Paper

support for nested tables, mixed query of business data and configuration data, virtual field
guery, and other customized queries.

Similar with the other components within the platform, the query engine was implemented
using C/C++, and its hotspot codes were optimized using assembly language for mainstream
hardware platforms. Its high efficdency and reliability have been verified in the real production
environments of many Fortune 500 companies. Even when the optimization methods of
short-circuit expressions is disabled, 13 millions times of evaluation of logic expressions (A and B
or C and D) per second can be achieved on a ThinkPad W510 notebook (having 4 cores and 8
threads) producedin 2010, using single core and single thread only (Intel Corei7 1.6GHz).

* Search Helper: converts the specified string into a format that can be easily searched, induding
removing all punctuations, converting characters to lowercase, and creating abbreviations. For
example, the string " _Steven.Jobs " will be converted to 'stevenjobs'and 'sj'.

In addition, the Search Helper can convert hieroglyphics to its Latin expressions, and can
support various languages. For example, it can convert specified Chinese characters into
different Latin expressions like Hanyu Pinyin (PRC), Taiwan Pinyin, Japanese Romanization, and
Korean Romanization, so that they can be easily searched. For example, "Calvin i&X" will be
either converted to 'calvin zhao' and 'cz' using Hanyu Pinyin (PRC), and or converted to 'calvin

jhao' and 'cj' using Taiwan Pinyin. Similarly, "13 " will be convert to '13 shu' and '13s".

For characters that have several pronunciations, the Search Helper will output all possible

combinations. For example, the string " #.H 75" will have results 'chan tian fang', 'dan tian fang’,
'shan tianfang', ‘dtf’, ‘ctf’, and ‘stf’.

The design goal of the common facilities module was to achieve the followings by improving
component-level reuse:

= Help users to further simplify and complete regular tasks.

Reduce code bugs.

Reduce the difficulty of code writing and code maintenance.

= Improve the average expression ability of each line of the code.

All advanced characteristics of C++ other than the templates have been avoided intentionally in
the base and sysutil modules, though they can be used appropriately in the facility module. The
purpose is to eliminate additional consumption caused by the followings: virtual function “one pointer
member per object” and “one base-offset reference per call”; type_info static linked lists traversal and
comparison associated with RTTI; virtual base “one pointer member per object” and virtual base
members indirect addressing. For detailed analysis of the advanced characteristics of C++, refer to
section “Consumption analysis and usage guidelines for RTTI, virtual functions and virtual base class”

23

http://baiy.cn/doc/cpp/inside_rtti.htm

BaiY Application Platform

a BaiY Product . .
Technical White Paper

(Chinese only) in my document C++ Coding Guidelines (http://baiy.cn).

3.3.1 Web Framework

The libutilitis library supports multiple Web protocols, including HTTP (RFC2616), FastCG
(www.fastcgi.com), and SCGI (www.python.ca/scgi/). The following table compares the features and
capabilities among these protocols.

Protocol High Perf. 1/0O Framework Synchronous I/O + thread pool | Support for Keep-Alive

FastCGl Yes Yes Yes
SCGlI Yes Yes No
HTTP Yes Yes Yes

As shown in the above table, libutilitis provides all the three protocols with two implementation
methods, namely High Performance |/O Framework and “synchronous 1/0 + thread pool”.

Synchronous I/O + Thread Pool Architecture

III

The “synchronous 1/O + thread pool” server model is mainly used to easily implement low-load

Web applications. Figure 7 shows how this server model works.

24

http://baiy.cn/doc/cpp/index.htm
http://baiy.cn/
http://www.fastcgi.com/
http://www.python.ca/scgi/

BaiY Application Platform

a BaiY Product . .
Technical White Paper

Operation Model of Synchronous I/O Web Application Framework

Worker threads pool

Worker Worker Worker

Worker Worker Worker

Web requests queue

Listener threads pool

Listener Listener Listener | ==:-:-

HTTP/FastCGI/SCGI requests
Web server Web clients

Figure 7

As shown in Figure 7, the Web application framework, which is based on “synchronous 1/0 +
thread pool”, comprises three main parts, namely listener threads pool, Web requests queue and
worker threads pool.

Listener threads pool waits for a Web request that is sent from the reverse proxy or browser, and
completes initialization tasks associated with this request. Then it puts the request to the end of the
Web requests queue, and continues to listen for the next request. All these tasks are completed by a
separate thread pool to improve concurrency under high-load situation. The maximum number of
threads in the listener threads pool is customizable by the user, and can be dynamically adjusted

25

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

according to load pressure.

The Web requests queue arranges all pending requests in a queue. In segmented processing mode
(see below), the Web requests queue also lines up intermediate requests that are not fully processed.
The maximum size of Web requests queue is customizable by the user.

The worker threads pool continues to pick up pending requests from the front of the queue, read
and process messages that are sent from the dient, generate a response, and return results. The pool
can be adjusted dynamically according to current load status and user configured parameters. When
the pool is in low-load or idle status, the number of worker threads will be reduced to the minimum
value specified by the user. When high-load status persists, the number of worker threads will increase
gradually until the maximum value specified by the user to provide extra concurrency capability. When
load pressure continues to decrease, the framework will gradually reclaim idle worker threads until the
minimum value spedcified by the user. Worker threads reclaiming strategy is configurable by the user.

Depending on applications, the “Synchronous I/O and thread pool” based Web application
framework supports two servo models:

* Blocking 1/O model: in this model, once a Web request arrives, the worker thread will
complete the whole process including read, analysis, calculation, results generation and
response returning. The worker thread will not process the next request until the current
request is fully processed. The Blocking I/O model is the simplest servo model and also the
easiest one to implement, but it has the disadvantage of low concurrency in high-load
complex applications.

* Segmented handling model: in this model, each request will be divided into several segments.
Once a segment is processed, the worker threads pool will put that request and its related
working status at the end of the queue, and then it will pick up the next request from the
head of the queue. Compared with Blocking I/O model, this model can provide better
balanced assignment of server resource and network bandwidth, but it needs to save users’
intermediate state.

High Performance Asynchronous Web Framework

Using the High Performace I/O Framework provided by the sysutil module, libutilitis has

implemented an efficient asynchronous Web framework which is based on asynchronous 1/0 and
callback. This framework can easily support tens of thousands of concurrent connections even on an
outdated AMD AthlonXP 2600+ (single-core/single-thread @1.8GHz) machine manufacturedin 2002.
On an entry-level 1U PC Server (with dual-socket Intel Xeon 56xx) manufactured in 2011, a single node
can permit tens of millions of concurrent connections. Compared with l1S+asp.net / Apache+php /
Nginx+php and Java / Python / RoR schemes, the Web framework based on C/C++ has a number of

26

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

advantages over themin terms of performance.

Even if we put aside .NET / Java / PHP / RoR / Python which are the relatively less efficient
Application Logic part, the Web framework still is directly comparable to the leading Web servers like
Nginx, Lighttpd, Charokee, and IIS. Web servers like Apache that uses the low-efficency “one
connection per thread” model are completely surpassed. The best method to evaluate performance is
to do real tests. As a reference, the following table compares the Requests Per Second (RPS) among the
Web framework, IIS and Nginx running on different platforms:

Web Servers | Platforms Requests Per Second
(RPS)

1S Windows 2k3 / ThinkPad T61 Core 2 Duo Mobile @2.0GHz 33500

libutilitis Windows 2k3 / ThinkPad T61 Core 2 Duo Mobile @2.0GHz 33200

Apache Windows 2k3 / ThinkPad T61 Core 2 Duo Mobile @2.0GHz 5650

[1S/ASP.NET Windows 2k3 / ThinkPad T61 Core 2 Duo Mobile @2.0GHz 5270

Nginx Ubuntu 8.04LTS / VMWare Single Core Guest @ ThinkPad T61 17000

libutilitis Ubuntu 8.04LTS / VMWare Single Core Guest @ ThinkPad T61 18900

Nginx/PHP Ubuntu 8.04LTS / VMWare Single Core Guest @ ThinkPad T61 160

Table 1. RPS comparison between Web frameworks

The test of Requests per Second is mainly focused on inspecting the expense the low-level
application framework spend on each request. So we return only a simple “Hello World” page for the
purpose of minimizing the interference caused by content generation and transmission. All the tests on
Windows platform are completed on a single IBM ThinkPad T61 notebook manufactured in 2007
(Windows 2003 SP2, Intel Core 2 Duo Mobile Dual-Core Processor, 4GB DDR2 800 Dual-Channel
Memory). And all the tests on the Linux platform are completed in a VMWare virtual machine under
above mentioned host (the guest environment has single CPU and 768 MB memory, with Ubuntu
8.04LTS installed). Configurations for Nginx have been optimized to the greatest degree possible.
Otherwise, the test result is only 12400 RPS under the default configuration with gzip compression
disabled.

All the results shown in the table above are the average resultfor continuous 10 tests. As shown in
the table, libutilitis Web framework makes its rivals such as ASP.NET / PHP lag far behind, and is equally
matched with the leading Web servers such as 1IS and Nginx. The reason is, libutilitis uses the High
Performance |/O Model supported by underlayer operating system and hardware. For example,

libutilitis uses overlapped 1/O+IOCP architecture on Windows platform (the same as IIS), and uses
non-blocking 1/0 + epoll architecture on Linux platform (the same as Nginx).

Additionally, all the tests were executed under the pressure of 100 concurrent connections and
100,000 continuous requests. 100 concurrent connections will not expose the drawback (efficiency will
decrease drastically as the number of concurrent connections increases) of architectures based on
Apache/PHP/ASP.NET and the like, and also can maximize the efficiency of the resources such as CPU,

27

BaiY Application Platform

a BaiY Product . .
Technical White Paper

network adapter and memory.

Admittedly, the above tests can only reflect a single aspect of Web applications. In terms of a Web
framework running on the specified platform, its performance is usually observed from the following
three aspects:

* Maximum Concurrent Connections: the maximum number of concurrent HTTP connections
that the Web framework can support on the given platform.

* Maximum Request per Second: the maximum number of requests that the Web framework
can support per second on the given platform.

* Dynamic Content Generation Performance: measurement of algorithm performance for
generating contents like graphics, reports, and pages in real time on the given platform.

Important: before starting with a test, make the test environment as clean as possible so the test
result will not be affected by the other factors. For example, the Request per Second test that we
mentioned earlier was executed under the condition with a tiny “Hello World” page and a moderate
number of concurrent connections, in order to eliminate, to the greatest degree possible, the
interference caused by other factors.

It is important to keep the testing environment as dean as possible, which is the basis of all
modern science. For example, the preset conditions (zero resistance, absolute horizontal, 1 standard
atmospheric pressure and zero centigrade) in physics, chemistry and other disciplines; and the
prerequisites for testing the acceleration (0-100km) performance of a car: wind velocity (statical
stability), road conditions (flat, no rain and snow), slope (horizontal). A dean testing environment is
good for discovering rules and characteristics of things, and also facilitates performance comparison
between different products.

Maximum Concurrent Connections is a hard indicator for the Web framework. It is closely related
to reliability, robustness, and survivability under environments like high-load, DDoS attack, and slow
connection attack. On the above mentioned T61 platform, libutilitis Web framework can support
high-load situation with over 200,000 concurrent connections, which is completely unachievabl e for
the other Web frameworks like PHP/Java/ASP.NET. With regard to the topic about Request per Second,
the previous sections have provided detailed discussion and comparison.

Dynamic Content Generation Performance is all about performance comparison between
programming languages and databases. There is no need to talk more about the performance
advantages of C/C++ over other popular languages used for Web applications development, such as
PHP, Java, C#, Ruby, Perl, and Python. Also, a lot of trustable benchmark comparisons can be found on
the Internet. The performance comparison among database and memory cache products is out of the
scope of this paper, because it has little relevance with how to choose a Web framework.

28

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

We fully understand that performance related topics are always controversial and it is hard to
make a choice purely based on theory. Practice is the sole criterion for testing truth. This is espedally
true in relation to performance measurement. Thus we welcome any invitation for A/B testing and
performance evaluation.

Not long ago, as the continuous performance improvement for hardware, efficency of programs
has become a topic that need to be considered only for operating system and a few software like
database and large-scale applications. Nowadays, this topic is back to the spotlight due to
environmental deterioration, increasing energy cost, and cloud computing and virtualization (separate
a single physical server into several VPS) going mainstream. We are dedicated to help customers
continuously improve product quality, application efficiency as well as Performance per Watt, for the
purpose of reducing energy consumption and carbon emission and better adapting customers to cloud
and virtualization environments.

Keep-Alive and HTTP Pipelining Mode

For high-concurrency applications, the Keep-Alive mode can spare the operations that are
repeated between requests, such as TCP connection establishment (3-way handshake), connection
termination (4-way handshake), flow control and initialization. At the same time, it has dramatically
saved system resource (TIME-WAIT pool). Thus it also plays a critical role in high-performance network
applications. FastCGl enables the Keep-Alive mode using the FCGI_KEEP_CONN flag contained in the
Begin Request message. HTTP turns the Keep-Alive mode on and off using the standard “Connection:”
header. The libutilitis library provides Keep-Alive supportfor both HTTP (1.1 or 1.0) and FastCGl.

Under environments with Keep-Alive enabled, libutilitis can also support HTTP Pipelining that

conforms to HTTP 1.1. In the HTTP Pipelining mode, clients can continuously send multiple requests
without waiting for the responses returned from the server.

29

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

HTTP/1.1 Pipelining
Pipelining enabled Pipelining disabled
Client Server Client Server
Reqg.1 Reqg.1
Reqg.3 \)
RED.‘ x R5p1
Reqg.2

Rsp.2 x
Rap.3
Rsp.2

Req.3 x

Rsp.3

by BaiYang / 2010

Figure 8

As shown in Figure 8, HTTP Pipelining technique has avoided the “stop-wait” protocol by
continuously sending multiple requests. This has dramatically reduced delay in communication and

processing and has enhanced network utilization and throughput. Thus the overall userexperience has
been considerably improved.

3.3.2 Typical Web Use Cases

The following figure shows a typical example of high-load Web applications.

30

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

Typical High-Load Web Applications Architecture

Internet

{Intranet
Reverse proxy service ﬂ
Proxy Proxy Proxy | = ==:e=-
HTTP/FastCGI/SCGI
Applications service
App App App
App App App

Node

memcached nodes @ Database service @

Node | --::..

Node

by BaiYang /2010

Figure9
Figure 9 shows a typical high-performance Web application with three-layer architecture. This is a

proven architecture that has been widely deployed in many large-scale Web applications induding
Google, Yahoo, Facebook, Twitter, and Wikipedia.

31

BaiY Application Platform

a BaiY Product . .
Technical White Paper

Reverse Proxy

The reverse proxy server, which is in the outside layer of the architecture, accepts connection

requests from users. In real use cases, the proxy server will also need to complete at least some the

tasks listed below:

Connection management: maintains the connection pools on the client side and application

server side, manages Keep-Alive connections, and terminates them after time out.

Attack detection and isolation: all requests associated with business logic will be sent to and
processed by the back-end application server, because the reverse proxy service does not
handle any dynamic content generation tasks. Thus, the reverse proxy service will almost not
be affected by program or back-end service vulnerabilities. The reliability and security of
reverse proxy service only depends on the product itself. Deploying a reverse proxy server at
the front-end of the application server can effectively set up a reliable isolation and attack
detection mechanism between the back-end applications and remote users.

When higher security is needed, users can add additional network isolation device like
hardware firewall at boundary positions of external network, reverse proxy, back-end
applications and database.

Load balance: use Round Robin or the "Least Connections First" service policy to achieve load
balance based on user requests, or utilize SSI technology to divide a user request into several

parallel parts and submit them to several application servers separately.

Distributed cache acceleration: Deploy reverse proxy servers in groups at network boundaries
that are geographically close to hot areas, and accelerate network applications by providing

cache service at locations close to clients. This has established a CDN network.

Static file server: when a static file request is received, the server directly returns the file without
submitting the request to the back-end application server.

Dynamic response cache: caches the dynamically generated responses that will not change for a
period, to prevent the background server from frequently executing repeated query and

calculation.

Data compression: enables GZIP/ZLIB compression algorithms for returned data in order to save
bandwidth.

Data encryption (SSL Offloading): enables SSL/TLS encryption for communications with clients.

Fault detection and Fault tolerance: tracks the health status of back-end application servers, to
avoid sending requests to a faulty server.

32

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

User authentication: completes tasks including user login and session establishment.
URL alias: establishes a uniform URL alias in order to hide the real location.

Applications mixture: mixes different Web applications together using SSI and URL mapping
technology.

Protocol conversion: provides protocol conversion service for back-end applications that use
protocols like SCGI and FastCGl.

The popular reverse proxy services include Apache httpd+mod_proxy, 1IS+ARR, Squid, Apache
Traffic Server, Nginx, Cherokee, Lighttpd, HAProxy, Vamish, and etc.

Application Service

The application service layer is located between the back-end service layer (e.g., database) and
the reverse proxy layer. It receives connection requests forwarded by the reverse proxy, and
downwards accesses structured storage and data query services provided by the database.

This layer has implemented all business logic assodiated with Web applications, and usually needs
to complete a lot of calculation and dynamic data generation tasks. The nodes within the application
layer may not be fully equivalent, and may be separated into different service clusters with SOA or
nano-SOA architecture. Working in combination with the asynchronous Web framework provided by
libutilitis, it is realistic to use C/C++ to implement Web applications that leave its rivals far behind in
terms of functionality and effectiveness.

33

BaiY Application Platform

a BaiY Product . .
Technical White Paper

Typical Working Model of Web Application Nodes

Distributed caching (memcached) network

Background worker i i
AlO callback threads pool threads pool

Local cache
Web requests |
queue [
—{ [T F>
[ccococ Background
| worker thread
AlO Callback
Thread - Database | | e
connection pool

Async 10 Callback
I0CP/epoll/kqueue/event ports/posix aio...

70 B¢ s

Operating system Database

by BaiYang /2010 -2013
Figure 10

Figure 10 shows a typical working model with high concurrency and high performance. Each Web
application node (represented by boxes labelled as “App” in Figure 9) usually works on its own server
(physical server or VPS), and several nodes can work in parallel in order to easily achieve horizontal

scaling (scale-out).

In the above example, a Web application node comprises three key parts: 1/O callback threads
pool, Web requests queue, and back-end worker threads pool. The workflow is as follows:

1. When a Web request arrives, the operating system informs AlO callback thread to process this
arrived Web request, through the I/O completion (or I/O ready) callback mechanisms which
are closed related to the platform such as IOCP, epoll, kqueue, event ports, real time signal

34

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

(posix aio), /dev/poall, and pollset.

2. When a worker thread in the AIO callback pool receives an arrived Web request, it attempts
to pre-process the request. During pre-processing, local high-speed cache will be used to
avoid data query which requires relatively higher cost. If local cache is matched, it will directly
return the result (still using asynchronous method) to the client and will complete this
request.

3. If the queried data is not matched in local cache, or the Web request needs writing to the
database, the AlO callback thread will put this request into the specified queue. The request
will waitfor an idle thread in the worker threads pool to further process it.

4. Each thread in the back-end worker threads pool maintains two Keep-Alive connections: one
is connected to the bottom layer database service, and the other is connected to the
distributed caching (memcached) system. The worker threads pool has implemented a
connection pool mechanism for both the database and distributed cache, through the
method that each worker thread maintains its own Keep-Alive connections. Keep-Alive
connection has substantially improved application processing effidency and network
utilization by repeated use of a single network connection for different requests.

5. Back-end worker threads wait for new requests to arrive in the Web requests queue. Once
getting a new request from the queue, the thread will first attempt to match the data being
queried by the request with distributed cache, if there is no match or this request needs
further processing such as database writing, this Web will be directly completed through
database operations.

6. After a Web request is fully processed, the worker thread will return the result as a Web
response to the specified client using asynchronous I/0O method.

The above procedures are intended to give you a general understanding about how a typical Web
application node works. It is worth noting that different Web applications may have very different
working model and architecture because of different design concept and functions.

Note that the edge-triggered AlO event notification mechanisms like Windows IOCP and POSIX
AlO Realtime Signal are different with level-triggered notification mechanisms like epoll, kqueue and
event ports. In order to prevent the I/O completed events queue from being too long or overflow,
causing the memory buffer being locked in the nonpaged pool for a long time, the above mentioned
AlO callback mechanism is composed of two separate thread pools and one AIO completed events
gueue. One thread pool is responsible for continuously listening for events arrived at the AIO
completed events queue, and then submit the events to an intemal AIO completed events queue (this
queue works under user mode and will never lock memory; the queue length is user-customizable.);
and simultaneously, the other thread pool is waiting on this internal AIO queue, and processes AlO

35

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

completed events that arrives at the queue. This type of design can reduce workload for the operating
system, and can avoid message loss, memory leak and memory exhaustion that may occur in extreme
situations. Also, it can help the operating system to better manage and utilize its nonpaged pool.

As a typical use case, most of Google Web applications like search engine and Gmail are
implemented using C/C++. Thanks to the high effidency and powerfulness of C/C++ languages, Google
provides global Internet users with the best Web experience, and also has achieved completing a Web
search among its millions of distributed servers around the world at total consumption of 0.0003 kW-h
only. For further discussion on Google Web application architecture and hardware scaling, refer to
http://en.wikipedia.org/wiki/Google and http://en.wikipedia.org/wiki/Google search.

Database and memcached Services

Database service offers relational or structured data storage and query service for upper layer
Web applications. Depending on specific use case, Web applications can provide access to different
database services using plugin mechanisms like database connector. Under this architecture, users can
flexibly choose or change to a database product which is most suitable for their needs. For example,
users can use embedded engine like SQLite for quick deployment and functions verification at POC
stage, and can switch to MySQL database solution which is cheaper at the preliminary stage. And when
business needs increase and database workload becomes heavy, users can migrate to a more expensive
and complex solution such as Clustrix, MongoDB, Cassandra, MySQL Cluster and Oradle.

Memcached is a distributed data objects caching service fully based on memory and <Key, Value>
pair. It offers unbelievable performance and has a large distributed architecture which eliminates the
need for inter-server communication. For high-load Web applications, memcached is an important
service often used to speed up database access. It is not a mandatory component, so users can wait to
deploy it till the time when performance bottleneck shows up in their database service. It is worth
noting that though memcached is not a mandatory component, its deployments in large-scale Web
applications (e.g., YouTube, Wikipedia, Amazon.com, SourceForge, Facebook, and Twitter) has proved
that memcached not only can keep performing stably under high-load environments, but also can
dramatically improve the overall performance of data query. For further discussion on memcached,
refer to http://en.wikipedia.org/wiki/Memcached.

However, we should note that distributed caching systems like memcached are intrinsically a
compromise solution that improves the average access performance at the cost of consistency. Caching
service adds distributed replicas of some records in database. For multiple distributed replicas of the
same piece of data, it is impossible to guarantee the strong consistency unless we employ consensus
algorithms like Paxos and Raft.

Contradictorily, memory cache itself is meant to improve performance. Thus it is unrealistic to
employ the above mentioned expensive consensus algorithms. These algorithms require each access

36

http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Google_search
http://en.wikipedia.org/wiki/Memcached

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

request to simultaneously access the majority replica including master and slave nodes in the
background database. Obviously, this will make performance even lower than not using caching
service.

Furthermore, the consensus algorithms like Paxos and Raft can only guarantee strong consistency
at single record level. That means there is no guarantee for transaction-level consistency.

Distributed caching will add complexity to the program design and will increase access delay in
unfavoured circumstances such as RTT delay upon unmatched, delay upon node offline or network
communication issues.

Since 20 years ago, the mainstream database products have implemented proven multi-layer (e.g.,
disk block, data page and query result set) caching mechanism with high match rate. Now that
distributed caching mechanisms have so many drawbacks while database products have excellent
built-in caching mechanisms, why the former have become an important foundation for modern
high-load Web App?

The intrinsic reason is, in the technology environment ten years ago, the RDBMS (SQL) system
with poor scale-out capability had become the bottleneck for network applications like Web App to
expand. Thus, NoSQL database products represented by Google BigTable, Facebook Cassandra,
MongoDB and SequoiaDB, and distributed caching systems represented by memcached and redis
emerged in succession, all playing an important role.

Compared with “traditional” SQL database products like MySQL, ORACLE, DB2, MS SQL Sever, and
PostgreSQL, both NoSQL database and distributed caching systems has sacrificed strong consistency to
get higher scale-out capability.

This kind of sacrifice was a painful choice under the technology conditions at that time. Systems
have become complex: traditional RDBMS is used for places where ACID transaction and strong
consistency are required and data volume is small; distributed caching systems are preferred for places
where there is “more read and less write” but there is still some room for compromising consistency;
NoSQL is used for big data with even lower requirement for consistency; if the data volume is large and
there is strict requirement for consistency, sharding of RDBMS could be a solution, which requires
various middleware to be developed for implementing complex operations such as request distribution
and result set merging for the underlayer databases. There are many different cases which are mingled
together making the systems even more complex.

In retrospect, that is an age when old rules were broken but new rules were still not established
yet. The old RDBMS is poor in scale-out capability so it cannot satisfy the emerging requirements for
big data processing. However, there was not a structured data management solution that can replace
the old systems and can satisfy most of user requirements.

37

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

That is an age when requirements were not satisfied. Products like BigTable, Cassandra, and
memcached are self-rescue results made by Google, Facebook and LiveJournal respectively. There is no
doubt these products aimed at “satisfying business requirements at the lowest cost” are poor with
generality.

In 2015, finally we are moving out of the predicament. As many of NewSQL solutions (e.g., Google
F1, MySQL Cluster (NDB), Clustrix, VoltDB, MemSQL, NuoDB and MyCat) are getting mature and the
technology is improving, horizontal scaling capability is no longer a bottleneck for RDBMS. Nowadays
architectures can guarantee enough horizontal scaling capability for the system, and simultaneously
can achieve strong consistency for distributed transactions (XA).

38

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

New High-Load Web Applications Architecture

Internet
/Intranet

Reverse proxy cluster W
Proxy Proxy Proxy | «rreee
HTTP/FastCGI/SCGI
Application nodes cluster
App App App
App App App

Object Storage cluster@ NewSQL cluster I:

Node NewSQL @ NewSQL
,_,.// \‘L_, ~—
Node | «e0aua. | ' — T/ T aaaaans
NewSQL NewSQL NewSQL
= — —
Node

by BaiYang /2015

Figure 11

As shown in the above figure, there is no longer a keen need for distributed caching systems or
NoSQL products after NewSQL is equipped with good scale-out capabilities. This has made design and
development of the architecture back to simplicty and clarity. Object Storage service offers the
supportfor storing and accessing unstructured BLOB data like audios, videos, graphics and files.

This kind of simple, clear and plain architecture makes everything seemly reverted back to years

39

BaiY Application Platform

a BaiY Product . .
Technical White Paper

ago. Object Storage service looks like disk file systems such as FAT, NTFS and Ext3, and NewSQL service
looks like the old single-machine database such as MySQL and SQL Server. However, everything is
different. Business logic, database and file storage have evolved to be high-performance and
high-availability clusters that support scale-out capabilities. Performance, capacity, reliability and
flexibility have grown with leaps and bounds. Human beings have always evolved in a spiralling course.
Every change that looks like a return represents intrinsic development.

As the distributed file systems (e.g., GlusterFS, Ceph and Lustre) that are mountable and support
Native File APl are becoming more mature and complete, it is expected to replace existing object
storage services for most use cases in a phased manner. This is a major milestone in the evolution of
the Web App architecture, of which a real revolution will come when we can implement a
high-efficency and high-availability general Single System Image system. Once such system happens,
writing a distributed application will be nothing different from writing a standalone multi-thread
application nowadays. It will be nature that processes are distributed and highly available.

Scalability of the Three-tier architecture

The three-tier Web application architecture has demonstrated incredible scalability. It can be
scaled down for deployment within a single physical server or VPS, and also can be scaled up for
deployment in Google’s distributed application which comprises millions of physical servers around the
world.

Spedfically, during project verification and application deployment and at the early stage of
service operation, users can deploy the three-layer service component into a single physical server or
VPS. Simultaneously, by cancelling the memcached service and by using embedded database products
that consume less resource and are easier to deploy, users can further reduce both the difficulty level
for deployment and the overall system overhead.

As business expands and system workload keeps increasing, the single-server solution and simple
scale-up will no longer be able to satisfy the operation needs. Users can achieve a scale-out solution by
distributing components to run on several servers.

For example, a reverse proxy can achieve distributed load balancing by using DNS CNAME records
or some layer-3/layer-4 relay mechanisms (such as LVS and HAProxy). It can also use Round Robin or the
"Least Load First" strategy to make distributed load balancing for application services. Additionally, a
server cluster solution based on shared virtual IP can also implement load balancing and the fault
tolerance mechanism.

Similarly, both memcached and database products have their own distributed computing, load

balanding and fault tolerance mechanisms. Furthermore, the performance bottleneck of database
access can be resolved by changing to NoSQL/NewSQL database product or by using methods such as

40

BaiY Application Platform

a BaiY Product . .
Technical White Paper

master-slave replication. Query performance of the traditional SQL database can be dramatically
improved by deploying memcached or similar services.

3.3.3 FastCGI? SCGI? HTTP!

Though libutilitis supports three types of protocols, it is recommended to use HTTP as the
preferred protocol for building Web applications. The first reason is, there is no need for protocol
conversion, and HTTP can perfectly support Keep-Alive soit can offer the highest efficiency. The second
reason is, as the most commonly used protocol today, HTTP is supported by the widest array of
products and offers the most stable implementations.

In case itis impossible to use HTTP for certain reasons (e.g., there is a need for deploying reverse
proxy service on the basis of IIS 6.0 or earier), SCGI usually comes to be the second choice. Compared
with FastCGl, the biggest advantage of the SCGI protocol is simplicity. A simpler protocol makes
implementation easier and is less prone to defects. As a complex and message-based network protocol
which supports multiplexing and Keep-Alive, FastCGl has not been correctly implemented on many
Web servers. For example, all the remote FastCGlI plugins on the current version of 1S (version 7.5) and
Apache (version 2.2) have defects to some degree.

Furthermore, avoiding the redundant message packaging mechanism in FastCGl makes it even
easier to implement SCGI effidently. Compared to SCGI, the sole advantage of FastCGl is the support
for Keep-Alive connection. Unfortunately, among all the mainstream Web servers that support FastCGlI
(such as IIS, Apache, Nginx, Lighttpd, Zeus and Cherokee), only Apache plans to include support for
Keep-Alive connection in the mod_proxy fcgi module of its upcoming release 2.3. Though the other
servers have provided efficdent and accurate FastCGl extensions without support for Keep-Alive
connection, there is no advantage over SCGI. Because the FastCGlI protocol is complex and the support
of it varies from different servers, SCGI should be treated as the second choice for developing Web
applications.

41

BaiY Application Platform

a BaiY Product . .
Technical White Paper

4. Cross-platform Cryptographic Library - libcrypto

The cryptographic library encapsulates all the algorithms and facilities that are provided by the
application platform and are assodated with cryptography. Because this library is implemented based
on libutilitis, it can avoid almost all platform related operations other than the algorithm optimization
part.

libcrypto Modules

algorithm|

© Encapsulated/implemented various
asynchronous and synchronous
encryption algorithms; Hash
algorithms; message authentication
algorithms; high quality random
number generator and data
compression algorithms; and etc.

A

facility |

© Built on the basis of the algorithm
module; implemented digital certificate
and a Certificate Revocation list (CRL);
data authentication similar to PGP; a
e secure message transmission layer; and
other generic functions.

© Implemented a VFS with compression
and encryption capabilities, based on
the VFS framework within libutilitis.

by BaiYang /2006

Figure 12

As shown in Figure 12, the libcrypto library is implemented using two-layer structure. The
following sections provide more details about these layers.

4.1 The Cryptographic Algorithm Module - algorithm

This module encapsulates all fundamental algorithms. Because almost all the popular algorithms
can be obtained from the Internet for free, we just need to categorize them and encapsulate them
altogether. This has dramatically simplified our implementation and debug efforts.

42

a BaiY Product BaiY Application Platform

Technical White Paper

The currently supported algorithms are described in the following sections.

4.1.1 Block Cipher Algorithms

Algorithms Key length

AES 128bit, 192bit, 256bit

BlowFish 32bit, 64bit, 96bit, 128bit, 192bit, 256bit, 384bit, 448bit

IDEA 128bit

MARS 128bit, 192bit, 256bit, 384bit, 448bit

DES 56bit

DES-EDE2 128bit

DES-EDE3 192bit

CASTS 40bit, 64bit, 96bit, 128bit

CAST6 128bit, 160bit, 192bit, 224bit, 256bit

SAFER-K 64bit, 128bit

SAFER-SK 64bit, 128bit (an enhanced version of SAFER-K, has corrected a vulnerable within
the key schedule)

TwoFish 32bit, 64bit, 96bit, 128bit, 192bit, 256bit

Serpent 32bit, 64bit, 96bit, 128bit, 192bit, 256bit

ARIA 128bit, 192bit, 256bit

Kalyna 128bit, 256bit, 512bit

Simon 64bit, 128bit, 192bit, 256bit

Speck 96bit, 128bit, 192bit, 256bit

SM4 128bit

ThreeFish 256bit, 512bit, 1024bit

CHAM 128bit, 256bit

HIGHT 128bit

LEA 128bit, 192bit, 256bit

SIMECK 64bit, 128bit

All the above algorithms support the following encryption modes:

Abbreviations:
IN - input vector
OouT — output vector (not for use in plaintext encryption)
ENC — encryption algorithm
- encryption key
- plaintext
— ciphertext
XOR - exclusive or
<< - shift left

43

a BaiY Product BaiY Application Platform

Technical White Paper

BSIZE - cipher block size
COUNT - counter

*x

Counter (CTR) Mode: IN(N) = ENC(K, COUNT++), C(N) = IN(N) XOR P(N); CTR mode is widely
used in ATM network and IPSec applications. Itis distinguished from the other modes by the
following characteristics:

= Hardware efficiency: allows multiple blocks of plaintext/dphertext to be processed
simultaneously.

= Software effidency: allows parallel computing which can make good use of parallel
technologies like CPU pipeline.

= Pre-processing: the output of the encryption box is independent of the input of plaintext
or cipher text. If there are sufficient storage devices, the algorithm is just about a series
of XOR operations, which will greatly increase the throughput.

asn
|

= Random access: decryption of block
i-1, providing high capability of random access. When encrypting a large block of data
but random access to the data is required (e.g., virtual file system), random access

ciphertext is independent of the ciphertext block

capability can effectively increase encryption strength. This can save us from the need to
reinitialize the algorithm to start a new round of encryption for each data block. In an
operation mode without support for random access, the algorithm can only operate in a
mode similar to electronic codebook (ECB). This is because the algorithm needs to be
reset before every data block is going to be encrypted.

= Provable security: can prove that CTR is at least as secure as other modes like CBC, CFB,
and OFB.

= Simplicity: different with other modes, CTR requires implementation of the encryption
algorithm only (It does not require the decryption algorithm). This is a huge

simplification for algorithms like AES.
= No fill: can replace stream cipher.

Cipher Block Chaining (CBC) Mode: IN(N) = P(N) XOR C(N-1), C(N) = ENC(K, IN(N)); this block
cipher mode was widely employed before CTR appears. It was designed for grouped (iterated)
encryption and authentication.

Cipher Feedback (CFB) Mode: IN(N) = C(N-1) << (BSIZE-j), C(N) = ENC(K, IN(N)) <<(BSIZE-j)
XOR P(N), in which j represents the number of bits for each encryption. CFB is similar to CBC,
but it processes only the j bits of data at once, and discards the remaining BLOCKSIZE —j bits.
From this point, CFB mode can change block cipher to stream cipher without compromising
security. Nevertheless, the CFB mode is considered to be wasteful, because most of the
results in each round are discarded (usually j is one byte, 8 bits. But typically the size of each
cipher block could be 64, 128 or 256 bits).

Output Feedback (OFB) Mode: IN(N) = OUT(N-1) << (BSIZE-j), C(N) = ENC(K, IN(N)) <<(BSIZE-j)

44

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

XOR P(N), OUT(N) = ENC(K, IN(N)) << (BSIZE-j). This mode is very close to CFB. The only
difference is that output (not XORed with plaintext) from the previous iteration is used as the
input of the current round. Similar to CFB mode, OFB mode can also be used as a stream
cipher mode. In addition, input of each iteration not being the ciphertext from the previous
iteration brings good fault tolerance. That means error propagation of a ciphertext block (one
byte) will not affect subsequent ciphertext blocks. Usually this mode needs to work with
message authentication and digital signature algorithms together, because not adding
ciphertext to the input will result in poor anti-tamper capability. OFB mode is often used in
communications with high noise level as well as in common stream cipher scenarios.

% Electronic Codebook (ECB) Mode: IN(N) = P(N), C(N) = ENC(K, IN(N)). It is the simplest and
also the most insecure encryption mode. It always uses the same key to directly encrypt the
input of each iteration. For identical plaintext blocks, it will always generate identical
corresponding ciphertext blocks. This will result in poor performance with repetition statistics
and structural analysis resistant. ECB mode is the worst scenario (i.e., every input plaintext
block is less than BSIZE) of one-time encryption. ECB mode should be considered only for
one-time pad or when a very small amount of datais being propagated.

4.1.2 Stream Cipher Algorithms

Algorithms Key length

SEAL 160bit (the fastest symmetric algorithm until now, is 8 times faster than AES128.
Though the source code is freely available, SEAL is the proprietary property of IBM
in the United States.)

MARC4 32bit, 64bit, 96bit, 128bit, 192bit, 256bit, 384bit, 448bit, 512bit, 768bit, 1024bit,
1536bit, 2048bit (enhanced version of RSA RC4, has removed the insecure 256-byte
header in ARC4)

Panama 256bit

Salsa20 128bit, 256bit

XSalsa20 128bit, 256bit (increased the unpredictability in Salsa20)
Sosema nuk 128bit, 192bit, 256bit

ChaCha8 128bit, 256bit

ChaChal2 128bit, 256bit

ChaCha20 128bit, 256bit

Rabbit 128bit

HC-128 128bit, 256bit

All of the above block cipher and stream cipher algorithms are implemented by the synchronous
algorithm object within libcrypto.

45

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

4.1.3 Public Key Algorithms

Currently libcrypto supports RSA algorithm with a key length of 512, 768, 1024, 2048, 4096, 8192,
or 16384 bits. Also, it fully supports public key encryption and signature.

4.1.4 Hash Algorithms

Algorithms Hash length

CRC32 32bit 4Bytes

CRC32-C 32bit 4Bytes

ADLER32 32bit 4Bytes

MD5 128bit 16Bytes
MD2 128bit 16Bytes
SHA1 160bit 20Bytes
SHA224 224bit 28Bytes
SHA256 256bit 32Bytes
SHA384 384bit 48Bytes
SHA512 512bit 64Bytes
Panama 256bit 32Bytes
Whirlpool 512bit 64Bytes
TIGER 192bit 24Bytes
RIPEMD128 128bit 16Bytes
RIPEMD256 256bit 32Bytes
RIPEMD160 160bit 20Bytes
RIPEMD320 320bit 40Bytes
SHA3-224 224bit 28Bytes
SHA3-256 256bit 32Bytes
SHA3-384 384bit 48Bytes
SHA3-512 512bit 64Bytes
BLAKE2-256 256bit 32Bytes
BLAKE2-512 512bit 64Bytes
SM3 256bit 32Bytes
SHAKE128 (256) 256bit 32Bytes
SHAKE256 (512) 512bit 64Bytes
LSH224 224bit 28Bytes
LSH256 256bit 32Bytes
LSH384 384bit 48Bytes
LSH512 512bit 64Bytes

46

BaiY Application Platform
Technical White Paper

a BaiY Product

4.1.5 Message Authentication Algorithms

The algorithm module supports HMAC algorithms that correspond to all the above listed hash
algorithms except for CRC32, ADLER32 and SHA-3.

In addition, non-HMAC family message authentication algorithms such as SipHash64, SipHash128,
and Poly1305<AES> are also supported.

It should be noted that new hash algorithms such as SHA-3, Blake2, and SHAKE are not affected by
length-extension attacks, so there is no need to use complex HMAC transforms.

4.1.6 Data Compression Algorithms

The algorithm module currently supports GZIP (RFC 1952), ZLIB (RFC 1950), BZ2, LZO, LZ4 (for
real-time data compression), and etc. All these algorithms support iterated and one-time compression.

ZIP and BZIP have been well known for a long time, so | will not describe them in this document.
LZO is famous for high-efficiency and lossless compression. Owing to its stable and exceptional
performance, it is widely used in various areas induding NASA's Mars rovers Spirit and Opportunity, the
famous executable file compression utility UPX, and etc. LZO has surprising efficiency. It needs only 64
KB space for compression, and needs no extra space for decompression. On a Intel Pentium 133 with
only 60MB/sec memory (memcpy) bandwidth, LZO can achieve 20MB/sec and 5MB/sec for
decompression and compression respectively. With similar compression ratio, LZO can be several times
faster than other famous algorithms like ZIP and RAR.

LZ4 is a newly emerged real-time compression algorithm. Compared with the famous LZO, LZ4 can
provide higherefficiency: 1 - 4 times faster than LZO, under the condition of similar compression ratio.

4.1.7 Data Encode/Decode Algorithms

The libcrypto library currently supports the most popular data encod e/decode algorithms such as
HEX, BASE64 and BASE64-URL.
4.1.8 Random Number Generator Algorithm

As per the current environment, libcrypto can obtain a good random seed through interfaces like

47

a BaiY Product

BaiY Application Platform
Technical White Paper

CryptoAPI and /dev/random, and can work with secure hash algorithms and synchronous algorithms to

generate a high quality random sequence with spedified length.

4.2 The Common Facilities Module - facility

The common facilities module is built upon the cryptographic algorithm module. As a standard
component within the application platform, it offers software designers with a universal and delicate

tool set associated with cryptography. This module contains the followings:

*x

Certificate: uses public-key signature and hash algorithms to implement digital certificate and
a Certificate Revocation list (CRL) that can satisfy PKI requirements.

Encryption algorithms similar to PGP: uses public-key cryptography, Digital Signature
Algorithm (DSA) and synchronous algorithms to implement a data encryption and signature
mechanism that is similar to PGP.

Secure message transmission layer: uses public-key algorithms, synchronous algorithms,
message authentication algorithms, and data compression algorithms to implement a

message-otiented secure and transparent transmission layer.

VFS supporting compression and encryption options on-the-fly: uses hash algorithms, data
compression algorithms, and synchronous algorithms to implement a file-based VFS tool,
which is compatible with the VFS framework within libutilitis and supports real-time access.
Iterative transformation protect of the encryption key is also supported. If the encryption
option is enabled, the same encryption strength could be applied to directory listinformation
and the meta data of each file and each directory.

License agreement: uses compression, digital signature and obfuscation algorithms to
provide uses with a generic tool used for license agreement authentication and protection.

48

a BaiY Product BaiYApp.Iication. Platform
Technical White Paper

5. Data Processing Tools

Includes data processing related components like report generator, embedded database engine,
database access interface and etc.

5.1 Report Generation Library - libreport

The report generation library is implemented on the basis of libutilitis. It can generate reports in
spedfied format using customized templates and specified dataset. The library has the following
functions:

*X Generate reports in formats such as Excel 2.0 (BIFF), Excel XP (ExcelML), Excel 2007 (xIsx), and
HTML.

* s independent of third-party components like Microsoft Excel, thus will never bring License
issues.

* Supports all kinds of charts (except for Excel 2.0 and Excel XP) induding line chart, bar chart,
pie chart, and Gantt chart.

* Supports customizable variables and constants, formulas, as well as all field types such as date,
time, numbers and text.

* Supports 118N and customizable themesincluding font, graphics, texts, and color.

* High performance and low consumption: load data and generate the report iteratively (one
by one), one pass scan.

The libreport library offers cross-platform report generation tools with a rich set of functions. Its
independence of any third-party component not only eliminates license issues, but also maintains
convenience for deployment and usage, high efficiency as well as cross-platform capability. Its
functionality, performance and stability have been proved after many years of usage in production
environments of large enterprises.

5.2 ODBC Encapsulation Library - libodbc_cpp

The ODBC encapsulation library is implemented on the basis of libutilitis. As part of the 1SO
standard, the universal ODBC interface is widely supported by major platforms and almost all
SQL/NewSQL database products. It is implemented as Native Client APl in many database products like
MS SQL Server, DB2, MySQL, Firebird, PostgreSQL, MySQL Cluster, Clutrix, OceanBase, InfiniDB,

49

a BaiY Product BaiY Application Platform

Technical White Paper

MemSQL, Greenplum, and Teradata.

Note: Both psglODBC and libpg are Native Client Library for PostgreSQL, and there is no

dependence between them. However, psglODBC will use libpg to complement some public operations
that are not performance critical under the default compilation options.

The ODBC encapsulation library has implemented the following functions:

*x

ODBC interfaces are grouped and encapsulated with the concept of Connection, Statement
and Result set.

Supports prepared statement and dynamic parameter binding. Zero-copy binding is
supported for all types of parameters.

Supports zero-copy pre-binding or post-binding for result set fields.

Thanks for the high efficiency BLOB and string type with reference counting and copy on write
mechanisms which is provided by libutilitis, all zero-copy data binding operations are

transparent to the user. Users do not need to pay any extra effort for it.

Uses BLOB type and strings with reference counting and zero-copy, thus all zero-copy and
binding operations are transparent to users, which spares users any additional efforts.

Supports ODBC connection pool.

Can easily configure commonly used parameters at connection and statement level. These
parameters include time-out values, maximum result set size, maximum field size, and other
common properties. It also can send and retrieve customized or advanced options with DM
and Driver directly.

Supports administrative operations like table/index existence checking, acquisition of
table/database information, and termination of current operation.

Compatible with Microsoft 32-bit/64-bit ODBC library, unixODBC, iODBC, and common ODBC
or SQL/CLI applications like DB2 CLI.

ODBC not only is widely supported by major platforms and products, but also is the most effective
universal database interface. Zero-copy capability of ODBC can avoid high consumptions of memory
copy and format conversion, which are resulted from interfaces like OLEDB, ADO, JDBC, and ADO.NET.
All the above mentioned database products use ODBC interface to implement their Native Client
Library, which reflects that thisinterface is of superior efficiency.

In addition, ODBC is also appropriate for preventing Copyleft restrictions with Client Library of
database products like MySQL, without compromising efficiency.

50

a BaiY Product BaiY Application Platform

Technical White Paper

5.3 SQLite Encapsulation Library - libsglite_cpp

SQlite (http://sqlite.org) is a very famous embedded database engine. It has been 10 years since
its first publication. There is no doubt with its stability and functionality, because it has been widely
employed into the key products of famed companies like Microsoft, Google, GE (General Electric),
Apple, Oracle (Sun), Nokia (Symbian), Mozilla (Firefox), Adobe, Toshiba, and McAfee. The key
characteristics of SQlite are asfollows:

*x

x

Free and open source under a very loose agreement.
Supports various operating systems and hardware platforms.

Provides stable support for large database with Terabytes of data and hundreds of millions of
records.

Offers ACID assurance; supports most of the standard SQL92 functions including primary key,
foreign key, composite index, transactions, view, and trigger; supports standard SQL language.

Single database file with cross-platform formats.
Online backup with uninterrupted service.

The database engine (only 300KB) is fully embedded into the application, with no need for
installing any database service separately (server less). No configuration or management
intervention is required (zero-configuration).

High efficency — the embedded engine can avoid consumptions of data transportation and
encoding/decoding, and supports automatic query evaluation and optimization.

Implemented on the basis of libutilitis and libcrypto, the libsqlite_cpp library provides a C++
encapsulation of SQlite. It offers the following functions:

*

Grouped and encapsulated SQlite interface with the concepts of DB (Connection), Statement
and Result set.

Prepared statement, dynamic parameter binding, and zero-copy parameter binding.
Zero-copy binding for result setfields.
Convenient configure options such as timeouts, WAL mode, and Shared Cache mode.

Administrative operations such as table/index existence check, acquisition of table/database
information, terminating ongoing operations.

SQLite VFS Driver (EncVFS) provides on-the-fly strong encryption for all types of data induding
primary database, temporary database, attached database and all log files, to ensure no
information leakage. It can employ all block cipher algorithms and stream cipher algorithms
that are supported by libcrypto (Refer to 4.1.1 Block Cipher Algorithms and 4.1.2 Stream

51

http://sqlite.org/

a BaiY Product

BaiY Application Platform
Technical White Paper

Cipher Algorithms). Enabling EncVFS will make libsglite_cpp depend on libcrypto.

On the premise that efficiency and functionality not being affected, the user interface and
semantics for libsglite_cpp are as consistent as possible with libodbc_cpp, so users can easily migrate
between both libraries.

5.4 nSOA - libapidbc

The libapidbc library can be divided into three correlated parts. It defines a cross-platform plugin

interfaces (IPlugin) which have the following characteristics:

*

Plugins are usually provided in the form of dynamic-link library (DLL), exposing a single
interface like “extern "C" void* Createlnstance(void);”. Plugins can also be embedded into
projects in the form of static library or source codes, without exposing any interface.

Plugins can carry or accept any complex CConfig information. These information are divided
into several parts, such as general configurations, advanced configurations, and intemal
configurations. Each part can be customized according to plugin category or the specific

implementations.

Each plugin can carry two VFS which contains any type of resources. These VFS are used as an
extemal virtual volume (usually contains resources like pages, graphics, and language pack),
as well as a private virtual volume for internal use (e.g., report templates, data fields mapping

table and etc.).

Automatic plugins matching is implemented based on current environment factors such as
processor, operating system, and release version (MBCS / UNICODE).

IPlugin defines a complete, self-descriptive, flexible and manageable interface. Based on it,
libapidbc defines DBC (database connector) plugin types. DBC offers the following functions:

*

As a middleware, DBC is easier to use than libsglite_cpp and libodbc_cpp. It can directly use
CConfig that is independent of database products to define table, index and data sharding
rules, without the need for any SQL or NoSQL statement.

Supports CAS (Compare and Swap) atomic updates that are based on the Revision field. This
algorithm can resolve the competition issue that several nodes update the same record
simultaneously.

Provides data encryption service transparent to the user, and adds reliable strong encryption
for data transmission and data storage for underlayer database. In situations where
underlayer products or services do not support strong encryption, middleware will be

employed for achieving this purpose tr